:
i
i

=
=i

PIERRE DL F EMIA T1

I
2
]
b
k=3
=]

X% Y= 2" N
n'a pas de solution pour des entiers ;

Abstract -- Latency insensitive protocols (LIPS)
have been proposed as a viable means to
connect synchronous I[P blocks via long
interconnects in a system-on-chip. The reason
why one needs to implement LIPs on long
interconnects stems from the fact that with
increasing clock frequencies, the signal delay on
some interconnects exceeds the clock period.
Correctness of a system composed of
synchronous blocks communicating via LIPs is
established by showing latency equivalence
between a completely synchronous composition
of the blocks, and the LIP based composition. A
design flow based on a synchronous
composition specification, and stepwise
refinement to LIP composition can be easily
conceived, and a proof obligation to show
latency equivalence between the synchronous
specification and the refinement needs to be
discharged. In this work, we propose a
functional programming based framework for
modeling and simulating LIP, and implement the
semantics of various refinement steps in the
programming model, so we can validate the LIP
model against the original system within this
functional programming framework. Such
validation becomes easier due to the inherent
denotational model of functional languages. We
specifically use Standard ML to model the
original system implementation as well as its
latency insensitive version and compare the two
by creating a model that contains both, giving
them the same inputs and checking their outputs
to be latency equivalent.

FERMAT

Formal Engineering Research using
Methods, Abstractions and Transformations

Technical Report No: 2005-03

A Functional Programming
Framework for Latency Insensitive

Protocol Validation

Syed Suhaib, Deepak Mathaikutty, David Berner,
Jean-Pierre Talpin, Sandeep Shukla

{ssuhaib,damathai,shukla}@vt.edu
{david.berner,talpin}@irisa.fr

Step 1

Collection of synchronously
communicating processes

Step 2 I

Floor planning and
interconnect routing

° IP required
?
Yes

Encapsulation of all modules
with block of control logic

Step 4

Floor planning and
interconnect routing

Step 5

Refinement of long
interconnects

Step 6

Floor planning and
interconnect routing

Any Long
Inﬁercnnnacts

t————Done

Virginia
[[ﬂlﬂ]] Tech

A Functional Programming Framework for Latency
Insensitive Protocol Validation

Syed Suhaib, Deepak Mathaikutty, David Berner,
Jean-Pierre Talpin, Sandeep Kumar Shukla

Virgina Tech, USA
INRIA, France

{ssuhai b, damat hai , shukl a}@t . edu
{dberner,tal pinf@risa.fr

Contents

1 Introduction 2

2 Related Work 4

3 Background and Preliminary Definitions 5
3.1 Functional Programming 5
3.2 Preliminary Definitions, 6

4 LI Refinement Steps 8
4.1 SML based LIP description 10
4.2 CheckforCorrectness. 17
43 CaseStudy 18

5 Multiclock extension to LIP 20

6 Conclusion and Future Work 21

List of Figures

1 Refinement steps to LI implementation 9
2 Bridge 13
3 Comparing synchronous system with its LI implementation... 18

4 Adaptive Modulator L oo 19
5 LI based Adaptive Modulator 19

List of Tables

Abstract

Latency insensitive protocols (LIPs) have been proposetaable means to
connect synchronous IP blocks via long interconnects inséesy-on-chip. The
reason why one needs to implement LIPs on long interconiséetss from the
fact that with increasing clock frequencies, the signalagiebn some intercon-
nects exceeds the clock period. Correctness of a systenoseahpf synchronous
blocks communicating via LIPs is established by showirgniey equivalence be-
tween a completely synchronous composition of the blockd,tlee LIP based
composition. A design flow based on a synchronous composiiecification,
and stepwise refinement to LIP composition can be easilyetoed, and a proof
obligation to show latency equivalence between the symclusspecification and
the refinement needs to be discharged. In this work, we peoadsnctional pro-
gramming based framework for modeling and simulating Lt anplement the
semantics of various refinement steps in the programmingmsd we can val-
idate the LIP model against the original system within thisdtional program-
ming framework. Such validation becomes easier due to tiexémt denotational
model of functional languages. We specifically use Stantrdo model the
original system implementation as well as its latency isgere version and com-
pare the two by creating a model that contains both, givirepttthe same inputs

and checking their outputs to be latency equivalent.

1 Introduction

In todays embedded systems, clock speeds keep rising. Ji propagation
speed however is not increasing, hence a growing numbersijrehit a limit
where some wires on the chip are as long as the distance asbyeas during one
clock cycle. Since, the number of gates reachable in a saygle does not change
significantly, the percentage of the chip reachable withgingle clock cycle is
decreasing, and as a result we have reached a point whereyatessfit on a chip
than can be communicated in a single clock cycle [1]. In otdego past this
limit, latency insensitive protocols (LIP) provide meanddt components with a
multiple clock cycle distance still communicate corred¢fy.

In current SoC based design methodologies, reduced timeatket dictates
efficient reuse of complex components. This has led to the adeleveloping li-
braries of Intellectual Property (IP) components. Thegraéon of such complex
IPs on SoC and communication between them has shifted therpance bot-
tleneck of the system from computation within them to comioation between
them.

The impact of this shift of problem domains can be seen irestéthe-art
microprocessor designs. For example, the design of therpigetined Netburst
microarchitecture of Intel's Pentium 4 processor uses drnefirst pipelines
containing pipeline stages designed exclusively to handlle delays. Adrive-
stageis dedicated to specifically handle the signal propagatithout perform-
ing any computation [3]. Furthermore, recent studies usahe analysis tools
predict that in a 35-nm design running at 10GHz, accessing<aye Level-1
cache requires about three clock cycles [4]. Increasetvelaterconnect length
affects current memory-oriented microarchitectures str@ngly rely on the low
communication latency assumption [5]. Therefore, it is am@nt to equip such
models with protocols that make them latency insensitivgdhd ensure proper
functioning also for distances beyond one clock cycle.

Dynamic test and validation can be used to show that a systerg ul tech-

niques is functionally equivalent to the same system assgizero delay com-
munication. These tests are not reliable, since thesedeit€over certain input
vectors. If the LI protocols can be validated using formaifieation techniques,
the system is correct for all possible input vectors. In otdéormally verify such
protocols, they have to be specified in a formal language hedked for formal
properties. One restriction of formal verification is thia¢ tstate space of mod-
els is growing exponentially with their complexity, but thember of states that
can be verified is limited [6]. Another way to confirm the catreess of such an
implementation is to mathematically formalize it, but me&tiatically proving the
equivalence of two systems is a challenging task. It requéienplex mathemat-
ical proofs, that are not straightforward to follow by oth@rho want to confirm
them.

In this work, we propose a functional programming framewtwrkvalidate
such systems. A functional program is a function that rexetlie programs input
as argument and delivers the programs output as result.slbdanternal state,
which makes it free from any side effects. Most other LIP apphes [2, 7]
lack the validation of functionality. [1] shows a formal foof correctness of
the LIP, but is difficult to follow. In [8] we formally verify lhe protocol for a
simple example, but to verify larger systems would be diffidue to the state
space explosion. Here, the validation of the protocol iy éasformulate and
to comprehend, and can also be applied to large systems. ¥dé#isplly use
Standard ML (SML) [9] to model the original system implemnedidan as well as
its LI version and check the output of both models to be |atauivalent.

The paper is organized as follows: In Section 2, we show tladee work
done using LIPs. In Section 3, we introduce the preliminagfinitions and no-
tations used in the paper, followed by the LIP refinement oeitogy illustrated
in Section 4. In this section, we described the componeradete for the LIP
refinement and show how it is implemented in SML along with secstudy. In

Section 5, we show the LIP implementation for multiclocktsyss followed by

the conclusion in Section 6.

2 Related Work

LIP for systems with long interconnection delays (i.e. ¢tge#han one clock
cycle) were initially proposed by Carloni et al [10, 1, 11 single-clock SoCs. In
their approach, all processes are encapsulated in a wragpgerive a process that
is latency equivaleftto the actual process, without having to modify the intesnal
of the original IP. Relay stations are added along the lotgr@@nnections. They
act like pipeline blocks to store and forward data, and doratBleast two registers
and a control logic. The insertion of these relay statiogsdases the number of
elements to route and requires additional space on the ohifinéir placement.
Once it is determined where relay stations have to be addsstilmn the length of
the interconnects, placement and routing of the entire dagign now including
the relay stations has to be redone. Several iterationsdoement and routing are
needed in order to get a configuration that satisfies alléoterection constraints.

All components of such LI designs are assumed to operate tivilrsame
clock. Singh and Theobald generalize the LI theory for Gligh&synchronous
and Locally Synchronous (GALS) systems [7]. In their applop@omplex FSMs
implemented in the wrapper control all input and output algnThe communica-
tion network is implemented as an asynchronous system teecbmodules with
different clocks. Overall this approach is associated wéhvy penalties in terms
of implementation costs and performance.

Casu and Macchiarulo show how to reduce chip area compar€drtoni’s
approach [2]. They use a smart scheduling algorithm for timetfonal block
activation and substitute relay stations with simple flgp#. One disadvantage
of this approach is that the schedule has to be computed & @nid depends on
the computation in the process. If any change is made in ageps, it may result

in a change of the flow of tokens. In this case, the scheduléHasrecalculated,

1We define the notion of latency equivalence in the prelimjmfinitions section

which is expensive.

In [8] we propose another modification of Carloni’s apprgaghich involves
removing the relay stations along the long interconneadd@serting extra wiring
logic using a splitter and a merger process. This solutigerteralized for multi-
clock systems where communication is done based on a gltwuki and the pro-
cess wrapper links the processes to the environment, @céigp of the local clock
of the process. Since there are no relay stations, thererisquirement to place
the relay stations along the wires, whereas the splittema@djer processes are
placed on the interface of the process. Here, we use thisapipand show how

to validate it in a functional programming framework.

3 Background and Preliminary Definitions
3.1 Functional Programming

Functional programming is seen to be highly relevant to théeustanding
of reactive and interactive systems. A computation is esged as a function
and its interaction with the outside world is modeled as tamiven to the func-
tion. These interactions are considered infinite in natanel, are modeled using
streams [12]. Functional programs contain implicit pad&in, which is very use-
ful when dealing with embedded system applications, sineg typically have a
considerable amount of built-in parallelism, whereas impee languages such
as C++ are inherently sequential. While functional langusafit naturally for
data flow applications, they provide a rich variety of cohttenstructs, making
them more suitable for control dominated applications.tliemmore, functional
languages provide a clean and simple semantic model, wieidbrms all com-
putation by function application, thereby providing a maiestract notation to
express computation.

We use Standard ML (SML) [9] to model the original system adl a® its
LI version and compare both the models. SML offers an exceliatio of ex-

pressiveness to language complexity, and provides cotiveetifficiency. SML

5

manages to combine safety, security, and robustness witka deal of flexi-
bility because of its type and module system. Other feataféke SML based

framework include:

e SML provides good expressiveness with its ability to treatctions as first-
class values, and its usage of higher-order functions. Vhéadility of
imperative constructs provide great expressive powerimwdhsimple and

uniform conceptual framework.

e SML provides a high-level model which makes programmingeredficient
and more reliable by automating memory management and gadmlec-

tion.

e SML does static type checking which detects many errorsatiation time.
Error detection is enhanced by the use of pattern matchiddgogrthe ex-

ception mechanism.

e The SML module system is an extension of the underlying polyphic
type system thereby providing separation of interfaceifipaton and im-
plementation. These facilities are very effective in stndoag large pro-

grams and defining generic, reusable software components.
3.2 Preliminary Definitions

In this section, we show some of the definitions we use in tbieafehe paper.
Let V be the set of data values and, T be a countable set of taneps. Unless
otherwise specified, in this paper, we assumeN =set of natural numbers. An
evente € V x T is an occurrence of a data value with a particular time stamp.
However, in the systems we consider, a special event caliednt eventenoted
by T may occuf. Therefore, the set of all events is denoted by E, wherd and

for all otherec E, ec V x T. When ec V x T itis called aninformative event

2It may be caused due to lack of valid data in the producer otaltiee consumer’s request to
delay a transmission

A signals is defined to be a sequence of events, often denote@dss . .. where
g € E.

For the preliminary definitions, if s is a signal, s[i] dermthkeit" event, hence
either s[ile V x T or s[i] = 1. The set of all signals is denoted by S. The signals
can be either input signals or output signals of a process.aM distinguish
Stall signalsfrom all signals in the system. A stall signstlis a sequence of
boolean events, i.est[i] € Bool x T The set of all stall signals is denoted 8y.
In our system, IPs are hardware modules that map input sigmalutput signals,
therefore in this paper we refer to them as processes. A ggpds a functionS'
— S"where n, m are natural numbers. A synchronous system csisigtese
processes where zero-delay communication and zero-timguiation among
these processes happen at the global clock edge.

In the remainder of this section, we define a few terms andinotathat are

used throughout the paper.

Definition 1 Given one tuple of m elements and another of n elem@htseates
a tuple of m+n elements.

<al,az,---,an>©<b17b27---7bm>: <a17a27"'7an7b17b27"'7bm>

Definition 2 Given two tuples of n events and n signals respectigglgreates a
tuple of n signals with the n events appended to the n signals.

<ene,....en> P <8,%,.... 5> = <er1Bs,DR,...,enH S > Where
e @ s =9’ is a signal such thatjs= e;s;

Definition 3 Vecf! ;(exp(i)) = <exp(1),exp(2); -,exp(n)> where, exp(i) is an ex-

pression s.t. exp(K) is a textual replacement of i by k.

Definition 4 Latency Equivalence: Two signals $and $ are said to be latency

equivalent, 5= < 7 (51) = ¥ (S2), Wwhere

F : S— Sbe defined a%, (s) = f(s,1,n) and,

f(s,i+1,n), if slij=rt
f(si,n) =14 g, if (i=n)
gli]® f(s,i+1,n), otherwise

¥ takes a signal as input and outputs a signal dropping aVents, but preserving
all informative events. The above definition assumes thatthe length of the
signal and signal is assumed to be finite. If s is infinite, ttenabove definition
changes slightly.

If the output signals of two systems are latency equivaleeighe same input

signals, then these systems are said to be latency equivalen

Definition 5 Sequential composition Let p; and p be two processes where, p

:S—Sandp:S— Sthen popi(s) = is called a sequential composition.

Definition 6 Feedback compositior{13]: Given a process p(Sx S) — (Sx S)
with two input signals and two output signals, the feedbaokgss FB(p) : S—
S is defined as FRp)(s) = s« where {s,sj) = (sj,S). The behavior of the

feedback is defined by the fixed point semantics.

4 LI Refinement Steps

In this section, we show a transformation procedure to aesidil system.
The transformation of a synchronous system to a LI systeimaw/s in Figure 1.

The steps to LIP refinement are as follows:

1. We start with a collection of synchronously communiogtcomponents.

These components can be custom-made modules or IP cores.

2. Approximate floor planning and interconnection routing@ne by design
engineers to check for long interconnects. If all commutiicecan be done

in a clock cycle, then there is no need for LIP refinement.

8

Step 1

Collection of synchronously
communicating processes

Step 2 l

Flocr planning and
interconnect routing

Encapsulation of all modules
with block of control logic

Step 4 l
Floor planning and
interconnect routing

Step 5 l

Refinement of long
interconnects

Step 6 l
Floor planning and
interconnect routing

Any Long
Interconnects
5

—— Done

Figure 1. Refinement steps to LI implementation

3. All modules are encapsulated with a block of control lodibis encapsu-
lation may include adding control logic that controls thewflof the events,
buffers, control stations, repeater stations etc to eraiect transmission
of data with the LIP. Once each process is encapsulatedicedion is done
to ensure its correctness, meaning that they behave sitithe original
processes. By correctness here, we mean that if two pracasseagiven
the same set of input events, then the order of the informa&tients on its

output signals are the same. We call thiency equivalence

4. Estimation using floor planning and interconnect routsngone again, this

3Two signals are said to be latency equivalent if both sighai® the same order of informative
events

time with the encapsulated processes to relocate and évdheadelays on

the long interconnects.

5. After finding the delays on the long interconnects, theges can then seg-
ment those long interconnects with additional processetagung buffers,
latches, forwarding stations, etc to ensure that data isgoty communi-
cated through the long interconnects. Depending on the adlthe inter-
connect, the events can be compared from the point they aceglbn the

signal to the point they leave the signal.

6. Floor planning and interconnect routing is done agaimsuee that no long

interconnects exist in the system.
4.1 SML based LIP description

In this section, we describe the components of the LI franmkwand its imple-
mentation in SML. A finite signal is modeled as generic lishereas an infinite

signal is written as delayed function application as shawinisting 1.

Listing 1. Finite and Infinite Signal

(+ Definition of a finite signal %)

2 datatype signal = nil| 'a :: 'a list

4 (x Definition of an infinite signak)

datatype infseq = nil| cons of 'a* (unit —> infseq)

In SML, for our convenience we formulate an event to be a liswwm el-
ements, where the first element is the value and the seconteeiadentifies
whether the event is an informative event or an absent eegng(= [3,1] is the

J'th

can be formulated as a list of events. (eg= [[1,1],[2,1],[3,0],...]).

event with 3 as the value and 1 as the identity of the &yehtence, a signal

The refinement steps for transforming a synchronous systeanli system

can be thought of as a two stage operation. The first stagb/es/encapsulating

41 corresponds to an informative event and 0 correspondsabsent event

10

the synchronous components and the next stage involvemgefire interconnects
to make them consistent with the flow of events. These stagesh@wn in the
steps in Figure 1. In the first stage, each module is encapsulath an equalizer.
An equalizer is a process instantiating template that giverput signals and a
stall signal, it producen output signals and stall signals. The functionality of

the equalizer can be divided into three modes:

1. Disable modeln this mode, the equalizer gets a stall event on its ingalk st
signal. In this case, the equalizer outputs absent eventdl ais output

signals and enables all the output stall signals.

2. Absent input moddn this mode, the equalizer receives an absent event on
any of its input signals and a stall disabled value on its frgtall signal.
In this case, the equalizer outputs absent events on allfpgibsignals and

stalls only those processes from which it received an in&dire event.

3. Valid mode The equalizer receives informative events on all its irggt
nals and its stall input is false. At this time, the equaliecces informative

events it received from its input signals to the output sigina

The formal model of the equalizer is shown below. Theelseconditions

illustrate the functionality of the equalizer based on itsd®s.

Definition 7 An Equalizer functiore : (S x Sr) — (S"x St") is defined as:

E(S1,---,Sn,stall) =f(sy,---, s, stall, 1,1, --- . 1) where,

f(sp,- -+, S, St i Styig, i, -, in) =
if(sty = F) then
if(3_4 (sjlij]) = 1) then /* Absent input mode */
<T,T,..., 1> O Vect (exp(])) D f(s1,- -, sn,st,Vect; (exp(j)))
else /* Valid Mode */
Vecf, (sifij)) © <F,...,F > @f(s, -, s,stVect_(ij+1))

11

else /* Disable mode */
<TTL..,T>0O<T,....T>& f(31,~-',aq,st,Vecﬁzl(eXQ(j)))

exp(j) :if (sjfij]) =tthenFelse T

exp()) :if (sj[ij]) = tthenij+ 1else j
The function f takes argumentsip, ---,i, to index §,%,---,S, to access the respective
events. Here, s = gtst means that stis the first element and st is the rest of the signal.

T and F denote the true and false values of the stall event.

Listing 2 shows the implementation of tlegualizerprocess in SML. The
equalizer reads one event from all the input signals of age®@long with an
event from the stall input. It then checks if all the events &ine are informative.
The check for events is done through #tgpesandinfo functions (lines 6-13).
The functionality setting the stall values fDisable modes done by thestallon
function and the output is given B3 (line 21). The stall values when the equal-
izer is inabsent event mods set bystallsetfunction and the output is given by

€2 (line 20). Finally, thevalid modeoutput is given byel (line 19).

Listing 2. Equalizer
fun equalizer() = fn s = fn st => f(s,st,indexstart(length(s))

fun f([],stlozst o) =[] [fC-.[01,-) =11 | f(-,-.[1) =[] |
4 f(s,stl::st,i) =
let

6 fun etype(x1::x2) = x3 etype ([])=nil

fun etypes[] = []]| etypes(xl::x) = etype(xl) @ etypes(x)
g fun info [] = false |

info(x1::[]) = if (x1 = 1) then true else false|
10 info(xl::x) = if (x1=1) then (info(x)) else false

val allevents = e(s,i) £ Events from all the signals at a time)
12 val allinfo = if info(etypes(allevents)) = true
then true else false { True when all events are informative)
14 fun stalloff (0) = [] | stalloff(n) = [1] @ stalloff(n-1)
fun stallon (0) = []| stallon(n) = [0] @ stallon (A1)
16 fun flipval(x) = if x=1 then 0 else 1
fun stallset ([]) =[] | stallset(x1::x) = [flipval(x1)] @ stallset(x)

18

12

val el = [allevents ,[stalloff(length (allevents))]]
20 val e2 = [tauevents(length(s)),[stallset(tags(alleven)]]
val e3 = [tauevents(length(s)), [stallon(length (allevan)]]
22 in
(case(stl) of
24 1 => (if allinfo = true
then ([el] @ f(s,st,incrementindex(i)))
26 else ([e2] @ f(s,st,incrementempty (i, etypes (alleven}}))
) |
28 0=> ([e3] @ f(s,st,i))|
-=>1D

30 end

The equalizerprocess is then sequentially composed with the synchronous
process to form the shell of the process.

The next stage of the refinement methodology involves refittie long inter-
connects by inserting processes that not only ensure tdloacof events from
one process to another, but also ensure that the delay irebptthe events is
minimized. The long interconnects are refined by insetinggeprocesses (List-
ing 3). A bridge is formed by sequential composition cff@itter and amerger
process (Figure 2). Eadiridge process has one input signal and one output sig-

nal. The delay on the bridge is modeled by belayprocprocess (line 1).

—: n- cycle l,—'-
| delay |
\ I

Y

Splitter Merger >

Figure 2. Bridge

Listing 3. Bridgeprocess
fun Bridge(n) = fn s => Delayproc(n) (merger(n) (splitter(n) (s)))

Thesplitterand themergerprocess are connected bynterconnects whene

is the delay on the long interconnect. Hersglitter process has output signals.

13

This process contains simple placement logic for the placemf events on these
n signals. The splitter is implemented at the output of a gscand it transfers
events on the corresponding signal. The splitter only glaxe event on one of
the output interconnects and absent events are placed aedhef the signals
at a particular time stamp. Assuming that there iaggents on the input signal
of the splitter, at every cycle, tH& event is placed on the" signal based on a
rotational scheme. For example, if the delay on the intareohis 3 cycles, then
in the current cycle, the first element will be placed on th& Bignal and absent
events will be placed on the other two signals. In the nexiegytbe second event
will be placed on the second signal and absent events willdeed on the first
and third signals and for the third event it will follow thehsmme. After the third
event is placed, in the following cycle, the fourth eventwé placed on the first
cycle again. This rotation scheme will continue for the ksthe events. This

functionality is illustrated by the formal definition showelow:
Definition 8 Splitter # is a process, s.t# (s) = (S;,S), .- ., S,) Where
(8,S,,.--,%,) = h(v,n,1) and,

T, ifn=1
g(n){

TOg(h—1), otherwise

PR ng(n_j)v ifi=1
f(x,n,i,j) =
TOf(x,ni—1,j+1), otherwise

. f(xvnvivl)@h(%n?l)v ifi=n
h(x:y,n,i)=
f(x,n,i,1)@h(y,ni+1), otherwise

Here, s= x:: y means that x is the first event of the signal s and y is reseditinal.

The SML implementation of theplitter process is shown in Listing 4. An
input signal and the interconnect delay is given togpétter process. One event

is read from the input signal amalserteventunction (line 6) places the event from

14

the input signal to one of the interconnects and absent ewatplaced on rest
of the interconnects. The events are placed in the rotdtsm@me as illustrated

earlier.

Listing 4. Splitter
fun splitter(n) = fn s = f(s,1,n)

fun f([1.-,-) = [|
4 f(xl:x, i, n)=
let
6 fun insertevent(,j,0) =[] |
insertevent(yl,j,n) = (if n =
8 then [yl] @ insertevent(yl,j,nl)
else [[0,0]] @ insertevent(yl,j,nl))

10 in
if (i =n)
12 then [insertevent(xl, i, n)] @ f(x, 1, n)
else [insertevent(xl, i, n)] @ f(x, i+1, n)
14 end

Contrary to the splitter, we implemennaergerthat takes input signals and
outputs one signal. The merger also extracts one event fnenmnput signals
based on the rotational scheme as illustrated earlier aaxkglit on the output

signal. The functionality of thenergeris formally defined below:

Definition 9 Merger s is a process, S.t (s1,S,...,S) =S where

S =g((X1 :1y1,X2 1 Yo,..., %0 1Y), N, 1) and,

. X, ifi=n
f(x:yni)=

f(y,n,i+1), otherwise

f((X1, %2+, %), N, 1)@
. . . . a((y1,Y2; -- ,yn),n, 1), i=n
g((X]_ SYL,X2 Yo, Xyl yn)7n7|) =

f((X X27)7n7|)
a((y1,Y2,-- ,Yn),n i+1), otherwise

SS=X1:YL, 2 =X21Y2, S =Xn 2 Yy

15

The SML representation of the merger is shown in Listing 5e &kiractevent

function extracts one event from all signals at a time (lineExtraction of events

from the signals is done in similar way as they are placed erirtterconnects by

the splitter.

10

12

Listing 5. Merger

fun merger(n) = fn s = g(s,n,1)

fun g([], n, i) =[] | g(x1:x, n, i) =
let
fun extractevent([],n) = []| extractevent(xl::x,n) =
(case (n) of
1=>x1 |
_ => extractevent(x, r1))
in
if (i =n)
then [extractevent(xl,i)] @ g(x, n, 1)
else [extractevent(x1l,i)] @ g(x, n, i+1)

end

After the refinement of all the components and the long im@nects of the

synchronous system, all the components are composed &vgéthe input se-

guence of the splitter and the output sequence of the mergegaivalent, since

the order of events written by the splitter on theutput signals and the order of

events read by the merger from itgnput signals is the same. Therefore, the flow

of events from the output of one shell across the long intereot to the input

of the corresponding shell is maintained. The stall signatsecting the com-

ponents work on the feedback semantics. In functional laggs, the feedback

is defined by the fixed-point semantics. The fix point is coragudor each event.

Listing 6 shows the fixed point computation for the feedbaakantics.

2

4

Listing 6. Feedback Process

fun fb(p) = fixpt(p,s,[],length(s)+1)
(+ The fixpoint is computed on event basis)
fun fixpt(qg,s,sout,0) = sout| fixpt(qg,s,sout,n) =

fixpt(g,s,(g s sout), Al)

16

4.2 Check for Correctness

Once we have the LI system and the original synchronousrsyste have to
verify if they are latency equivalent in order to satisfy fr@of obligation. We
do this by checking if the outputs of the two systems are tequivalent given
the same input sequence. The comparator is modeled whicateduaed version
of the equalizer. ThiEgcomparatomprocess compares the order of informative
events output by the two systems. In the case when an abseritiegeen on one
of the output signals, it is discarded and the next eventnsidered on the same
signal. The informative events on the two output signal€arspared in sequence
to ensure correct functionality. The LIP system satisfiegttoof obligation if the
output the two systems is latency equivalent, when givesdinge inputs. Figure 3
shows the setup of the problem. The SML code offlggom paratotis shown in

Listing 7.

Listing 7. Eqcomparator

fun Eqcomparator() = fn sl > fn s2 => compare(sl,s2,1,1);

fun compare ([] -,-,-)= [] |
4 compare(,[],-,-)=1[] |
compare(sl,s2,i,j) =
6 let

val eventl = extractevent(sl,i);

8 val event2 = extractevent(s2,j);
val valid = if eventl = [] orelse event2 = [] then false else €ry
10 val valpresent =
if valid = true
12 then if tag(eventl) = [1] andalso tag(event2) = [1]
then true else false
14 else false;
fun comp(x,y) = if (x=y) then true else false;
16 in
if valid = true andalso valpresent = true
18 then (if comp(value (eventl),value (event2)) = true
then [true] @ compare(sl,s2,i+1,j+1)
20 else [false])
else if valid = true
22 then if (tag(eventl)> [0] andalso tag(event2 > [0])

17

then [false]

24 else if (tag(eventl) = [0] andalso tag(event2) = [0])

then compare(sl,s2,i+1,j+1)

26 else if (tag(eventl) = [0] andalso tag(event2) = [1])
then compare(sl,s2,i+1,j)

28 else if (tag(eventl) = [1] andalso tag(event2) = [0])
then compare(sl,s2,i,j+1)

30 else [true]

else [true]

32 end

Synchronous System \

Input signal Result

Eqcomparator

LI System

Figure 3. Comparing synchronous system with its LI impletagon

4.3 Case Study

We consider a case study of an adaptive modulator that ¢srdithree IPs:
regulator, convolutor and analyzer. The regulator modakes an input signal
and a control signal and outputs based on the control signatiling a thresh-
old value. This output is then multiplied with a masking \&hy the convolutor
module. The output of the system is given by the amplitudaaig The ana-
lyzer module outputs the control signal based on the inpthe@fmplitude. The
connections of these components are shown in Figure 4.

With these three IPs, we follow the refinement steps deatiib&igure 1 to
construct the LI system. We have these three synchronoupawents. Early
floor planning and interconnect routing is done to find thegebn the intercon-
nects. We assume in this case that the regulated input ssgling interconnect.
Hence, we encapsulate the modules with the equalizer amatrépor planning

to find the delay on the interconnects. The long interconisettien refined by

18

Mask signal

Input signal Regulated input signal Amplitude signal
s & A

v

Regulator Convolutor

A

[

Analyzer
Adaptive contral L Amplitude

signal signal

Figure 4. Adaptive Modulator

adding a bridge process. The new LI representation of thpte@amodulator is
shown in Figure 5. The SML implementation is done using themonents de-
scribed in the previous section and is listed in the appendigrder to check the
correctness of the LI model, we create a model containingd kimaplementation
as well as the model with a zero communication assumptionféak the same
input sequence to both models and verify the latency eceriea of their outputs

as described in Section 4.2.

Regulator

Mask signal

-8 Multiplier

Figure 5. LI based Adaptive Modulator

Input signal Amplitude signal

The case study presented here is just an example to show leaw tkfine-
ment of a synchronous system can be done and validated aggiosginal im-
plementation. Any deterministic functionality can be gr&ted in a synchronous
module and can be compared with its LI refinement. Since, gihgrthe func-
tionality is easy in a functional framework, many case stadian be analyzed
successfully. On the other hand the functionality cannath@nged and verified

easily when the system is being formally verified using a rhodecker.

19

5 Multiclock extension to LIP

The LI systems proposed earlier have been mainly targeitgesclock syn-
chronous systems where all components operate on the sacle cdiWe now
consider extending the existing LI implementation for nuldick systems where
different components with different clocks are connectadavbitrarily long inter-
connects. The need for a system with components havingefiffelocks arises
when different IP blocks from different vendor are integdhin the same system.
At this time, however, we are only permitting the use of comgrgs with defined
clock relations. By clock relation, we mean that there is akmratio of the eval-
uation cycle between different components. In the SML fraor&, the notion of
clock is defined by the evaluation cycle of the processes dpproach therefore
makes it possible to connect components with known clogigat

We modify our original refinement methodology for multidkoefinement.
Before encapsulation of the processes, we adthaart and aStrip process to
each synchronous component of the system. IfiBert process inserts absent
events for each event on the original incoming signal whesdhe ratio of events
on the incoming signal to the number of events evaluated &ythcess in each
cycle. The output of thénsert process is then given to the original process. The

formal definition of thensert process is shown below:

Definition 10 Insert is a process, s.t.(s) = s where

s =g(y,n) and,

{T, ifn=1
f(n) =

1O f(n—1), otherwise
g(xL :x,n) = (O f(n) B g(x,n)

We also place &trip process at the output of the synchronous component.
This strip process removes the extra absent events indsrtiedInsert process.

The formal definition of thétrip process is given below:

20

Definition 11 Strip is a process, s.tw (s) = s where

s =g(y,n) and, t{x1 ::x) =X

t(s), ifn=1

f(t(s),n—1), otherwise
g(x1 :x,n) = f(x1,n)Dg(x.n)

Once these processes are composed with the original comip@reecan then
follow the refinement methodology. In SML, we can easily nfypdur aforemen-
tioned LI system to an LI system containing components wifflei@nt evaluation

cycles. The SML implementation of the two processes is shelawvn

Listing 8. Multiclock Interface
fun Insert(n)= fn sl = h(sl,n)
2 fun h([],-) =[] | h(x1:x, n) =
let

4 val sigl = [x1] @ tausall(n)
in

6 [sigl] @ h(x,n)
end

fun Strip(n) = fn sl = f(sl,n)
1o fun f([],-) =[] |

f(xl::x,n) =
12 let
fun dr [] = [] | dr(x::xf) = xf

14 fun drop ([].,-) =[] | drop(s,1) = dr(s)]|
drop (s,i) = drop(dr(s),i1)
16 in
drop(x1,n) @ f(x,n)

18 end

6 Conclusion and Future Work

We propose a functional programming based framework usMpg r the

validation of LI systems against their original system iempkntations. The in-

21

herent denotational model of functional languages malas thell suited to for-
malize such complex protocols. In this framework, compatatvithin the blocks
can be changed without much additional effort whereas im#&brverification
any change of the model results in time consuming verificatitms. We show
a refinement methodology that defines how to transform a systsisting of
synchronous blocks assuming zero delay communication tarasponding LI
system with long interconnects. Ahqcomparatorcomparator process is mod-
eled that does a latency equivalence check between thetsuipthe original
system and its LI version given the same input sequence. VM&haoset of LI
components, aaqualizer asplitterand amergerprocess, with which any deter-
ministic synchronous system can be implemented. We extesdvith processes
insertandstrip to multiclock systems where IPs with known clock ratios dse a
allowed.

Another possible extension for this is to allow unknown &loatios. This
would be another step towards being able to handle GALS systehere compo-

nents can have clocks that are entirely unrelated.

References

[1] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentell The theory of
lantency insensitive designEEE Transactions on Computer Aided Design
of Integrated Circuits and Systei20(9):1059-1076, 2001.

[2] M. Casu and L. Macchiarulo. A new approach to latency ms##/e design.

In Design Automation Conferenc2004.

[3] P. Glaskowski. Pentium 4 (partially) previeweddicroprocessor Repoyt
14(8):10-13, 2000.

[4] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, @ddug Burger.
Clock rate versus ipc: the end of the road for conventionaroairchitec-
tures.SIGARCH Comput. Archit. New28(2):248-259, 2000.

22

[5] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Copimgth latency in SoC
design. IEEE Micro, Special Issue on Systems on CI2ip(5):12, October
2002.

[6] Edmund Clarke, Orna Grumberg, and Doron Pelbthdel Checking The
MIT Press, 2000.

[7] M. Singh and M. Theobald. Generalized latency-insévesisystems for
single-clock and multi-clock architectures. Dresign, Automation and Test
in Europe (DATE’04,)2004.

[8] Syed Suhaib, David Berner, Deepak Mathaikutty, JeamBiTalpin, and
Sandeep Shukla. Presentation and formal verification ofralyfaof proto-

cols for latency insensitive design. Technical reportgWira Tech, 2005.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueeihe Definition of Stan-
dard ML - RevisedMIT Press, 1997.

[10] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanrincentelli.
A methodology for correct-by-construction latency ingéws design. In
In Proc. International Conf. Computer Aided Verificatiggages 309-315,
November 1999.

[11] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vaentelli. Latency
insensitive protocols. Ia1th International Conference on Computer-Aided
Verification volume 1633, pages 123-133, Trento, Italy, 07 1999. Spring
Verlag.

[12] E. Lee and T. Parks. Dataflow process networks, May 1995.

[13] Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and

Time in Models of ComputatioMorgan Kaufmann, 2001.

23

10

12

14

16

18

20

22

24

26

APPENDIX

Listing 9. SML Implementation for Adaptive Modulator

fun regulate ([],-) = []1 | regulate(,[]) = [] |
regulate (x1::x , yl:iy) =

if tag(yl) = [1] andalso value(yl) =1
then [[value(x1) — 10,1]] @ regulate(x,y)
else [x1] @ regulate (x,y)

(+x #1 and #2 corresponds to the first signal and second sigmral
fun Reg() = fn s1 = fn s2 => regulate(sl,s2)

fun Regulate () = fn s1 > fn s2 => fn st => Reg() (#1(Punzip ()
(Equalizer () s1 s2 st))) (#2(Punzip() (Equalizer () s1 s2)}pt

fun mul(-,[1) =[] | mul([],-) = [1 | mul(x::xf, yl:iiy) =
if tag(x) = [1] andalso tag(yl) = [1]

then ([[value (x)x* value(yl),1]] @ mul(xf,y))

else ([[0,0]] @ mul(xf,y));

fun Con() = fn sl => fn s2 => mul(sl,s2);
fun Convolute () = fn s1 = fn s2 => fn st => Con () (#1(Punzip ()

(EqualizerTwo () s1 s2 st))) (#2(Punzip () (EqualizerTwo g1 s2 st)))

fun comp(a,b) = if a>b then [1,1] else [0,1]

fun compsig([],-) = [] | compsig(xl::x,yl) = if tag(xl) = [1]
then ([comp(value(x1),yl)] @ compsig(x,yl))

else ([[0,0]] @ compsig(x,yl));

fun Alt(a) = fn sl => compsig(sl,a)

fun Alternate(a) = fn s1 > fn st =>

Alt(a) (#1(Punzip2() (EqualizerOne () sl st)))

24

