
F E R M A T
 Formal Engineering Research using

Methods, Abstractions and Transformations

Technical Report No: 2005-03

Abstract -- Latency insensitive protocols (LIPs)
have been proposed as a viable means to
connect synchronous IP blocks via long
interconnects in a system-on-chip. The reason
why one needs to implement LIPs on long
interconnects stems from the fact that with
increasing clock frequencies, the signal delay on
some interconnects exceeds the clock period.
Correctness of a system composed of
synchronous blocks communicating via LIPs is
established by showing latency equivalence
between a completely synchronous composition
of the blocks, and the LIP based composition. A
design flow based on a synchronous
composition specification, and stepwise
refinement to LIP composition can be easily
conceived, and a proof obligation to show
latency equivalence between the synchronous
specification and the refinement needs to be
discharged. In this work, we propose a
functional programming based framework for
modeling and simulating LIP, and implement the
semantics of various refinement steps in the
programming model, so we can validate the LIP
model against the original system within this
functional programming framework. Such
validation becomes easier due to the inherent
denotational model of functional languages. We
specifically use Standard ML to model the
original system implementation as well as its
latency insensitive version and compare the two
by creating a model that contains both, giving
them the same inputs and checking their outputs
to be latency equivalent.

A Functional Programming
Framework for Latency Insensitive

Protocol Validation

Syed Suhaib, Deepak Mathaikutty, David Berner,
Jean-Pierre Talpin, Sandeep Shukla

{ssuhaib,damathai,shukla}@vt.edu

{david.berner,talpin}@irisa.fr

A Functional Programming Framework for Latency
Insensitive Protocol Validation

Syed Suhaib, Deepak Mathaikutty, David Berner,
Jean-Pierre Talpin, Sandeep Kumar Shukla

Virgina Tech, USA
INRIA, France

{ssuhaib,damathai,shukla}@vt.edu
{dberner,talpin}@irisa.fr

i

Contents

1 Introduction 2

2 Related Work 4

3 Background and Preliminary Definitions 5
3.1 Functional Programming . 5
3.2 Preliminary Definitions . 6

4 LI Refinement Steps 8
4.1 SML based LIP description . 10
4.2 Check for Correctness . 17
4.3 Case Study . 18

5 Multiclock extension to LIP 20

6 Conclusion and Future Work 21

List of Figures

1 Refinement steps to LI implementation 9
2 Bridge . 13
3 Comparing synchronous system with its LI implementation 18
4 Adaptive Modulator . 19
5 LI based Adaptive Modulator . 19

List of Tables

ii

Abstract

Latency insensitive protocols (LIPs) have been proposed asa viable means to

connect synchronous IP blocks via long interconnects in a system-on-chip. The

reason why one needs to implement LIPs on long interconnectsstems from the

fact that with increasing clock frequencies, the signal delay on some intercon-

nects exceeds the clock period. Correctness of a system composed of synchronous

blocks communicating via LIPs is established by showing latency equivalence be-

tween a completely synchronous composition of the blocks, and the LIP based

composition. A design flow based on a synchronous composition specification,

and stepwise refinement to LIP composition can be easily conceived, and a proof

obligation to show latency equivalence between the synchronous specification and

the refinement needs to be discharged. In this work, we propose a functional pro-

gramming based framework for modeling and simulating LIP, and implement the

semantics of various refinement steps in the programming model, so we can val-

idate the LIP model against the original system within this functional program-

ming framework. Such validation becomes easier due to the inherent denotational

model of functional languages. We specifically use StandardML to model the

original system implementation as well as its latency insensitive version and com-

pare the two by creating a model that contains both, giving them the same inputs

and checking their outputs to be latency equivalent.

1

1 Introduction

In todays embedded systems, clock speeds keep rising. The signal propagation

speed however is not increasing, hence a growing number of designs hit a limit

where some wires on the chip are as long as the distance a signal covers during one

clock cycle. Since, the number of gates reachable in a singlecycle does not change

significantly, the percentage of the chip reachable within asingle clock cycle is

decreasing, and as a result we have reached a point where moregates fit on a chip

than can be communicated in a single clock cycle [1]. In orderto go past this

limit, latency insensitive protocols (LIP) provide means to let components with a

multiple clock cycle distance still communicate correctly[2].

In current SoC based design methodologies, reduced time-to-market dictates

efficient reuse of complex components. This has led to the idea of developing li-

braries of Intellectual Property (IP) components. The integration of such complex

IPs on SoC and communication between them has shifted the performance bot-

tleneck of the system from computation within them to communication between

them.

The impact of this shift of problem domains can be seen in state-of-the-art

microprocessor designs. For example, the design of the hyperpipelined Netburst

microarchitecture of Intel’s Pentium 4 processor uses one of the first pipelines

containing pipeline stages designed exclusively to handlewire delays. Adrive-

stageis dedicated to specifically handle the signal propagation without perform-

ing any computation [3]. Furthermore, recent studies usingcache analysis tools

predict that in a 35-nm design running at 10GHz, accessing a 4-Kbyte Level-1

cache requires about three clock cycles [4]. Increased relative interconnect length

affects current memory-oriented microarchitectures thatstrongly rely on the low

communication latency assumption [5]. Therefore, it is important to equip such

models with protocols that make them latency insensitive (LI) and ensure proper

functioning also for distances beyond one clock cycle.

Dynamic test and validation can be used to show that a system using LI tech-

2

niques is functionally equivalent to the same system assuming zero delay com-

munication. These tests are not reliable, since these testsonly cover certain input

vectors. If the LI protocols can be validated using formal verification techniques,

the system is correct for all possible input vectors. In order to formally verify such

protocols, they have to be specified in a formal language and checked for formal

properties. One restriction of formal verification is that the state space of mod-

els is growing exponentially with their complexity, but thenumber of states that

can be verified is limited [6]. Another way to confirm the correctness of such an

implementation is to mathematically formalize it, but mathematically proving the

equivalence of two systems is a challenging task. It requires complex mathemat-

ical proofs, that are not straightforward to follow by others who want to confirm

them.

In this work, we propose a functional programming frameworkto validate

such systems. A functional program is a function that receives the programs input

as argument and delivers the programs output as result. It has no internal state,

which makes it free from any side effects. Most other LIP approaches [2, 7]

lack the validation of functionality. [1] shows a formal proof of correctness of

the LIP, but is difficult to follow. In [8] we formally verify the protocol for a

simple example, but to verify larger systems would be difficult due to the state

space explosion. Here, the validation of the protocol is easy to formulate and

to comprehend, and can also be applied to large systems. We specifically use

Standard ML (SML) [9] to model the original system implementation as well as

its LI version and check the output of both models to be latency equivalent.

The paper is organized as follows: In Section 2, we show the related work

done using LIPs. In Section 3, we introduce the preliminary definitions and no-

tations used in the paper, followed by the LIP refinement methodology illustrated

in Section 4. In this section, we described the components needed for the LIP

refinement and show how it is implemented in SML along with a case study. In

Section 5, we show the LIP implementation for multiclock systems followed by

3

the conclusion in Section 6.

2 Related Work

LIP for systems with long interconnection delays (i.e. greater than one clock

cycle) were initially proposed by Carloni et al [10, 1, 11] for single-clock SoCs. In

their approach, all processes are encapsulated in a wrapperto derive a process that

is latency equivalent1 to the actual process, without having to modify the internals

of the original IP. Relay stations are added along the long interconnections. They

act like pipeline blocks to store and forward data, and contain at least two registers

and a control logic. The insertion of these relay stations increases the number of

elements to route and requires additional space on the chip for their placement.

Once it is determined where relay stations have to be added based on the length of

the interconnects, placement and routing of the entire chipdesign now including

the relay stations has to be redone. Several iterations for placement and routing are

needed in order to get a configuration that satisfies all interconnection constraints.

All components of such LI designs are assumed to operate withthe same

clock. Singh and Theobald generalize the LI theory for Globally Asynchronous

and Locally Synchronous (GALS) systems [7]. In their approach, complex FSMs

implemented in the wrapper control all input and output signals. The communica-

tion network is implemented as an asynchronous system to connect modules with

different clocks. Overall this approach is associated withheavy penalties in terms

of implementation costs and performance.

Casu and Macchiarulo show how to reduce chip area compared toCarloni’s

approach [2]. They use a smart scheduling algorithm for the functional block

activation and substitute relay stations with simple flip-flops. One disadvantage

of this approach is that the schedule has to be computed a priori and depends on

the computation in the process. If any change is made in any process, it may result

in a change of the flow of tokens. In this case, the schedule hasto be recalculated,

1We define the notion of latency equivalence in the preliminary definitions section

4

which is expensive.

In [8] we propose another modification of Carloni’s approach, which involves

removing the relay stations along the long interconnects and inserting extra wiring

logic using a splitter and a merger process. This solution isgeneralized for multi-

clock systems where communication is done based on a global clock and the pro-

cess wrapper links the processes to the environment, irrespective of the local clock

of the process. Since there are no relay stations, there is norequirement to place

the relay stations along the wires, whereas the splitter andmerger processes are

placed on the interface of the process. Here, we use this approach and show how

to validate it in a functional programming framework.

3 Background and Preliminary Definitions

3.1 Functional Programming

Functional programming is seen to be highly relevant to the understanding

of reactive and interactive systems. A computation is expressed as a function

and its interaction with the outside world is modeled as inputs given to the func-

tion. These interactions are considered infinite in nature,and are modeled using

streams [12]. Functional programs contain implicit parallelism, which is very use-

ful when dealing with embedded system applications, since they typically have a

considerable amount of built-in parallelism, whereas imperative languages such

as C++ are inherently sequential. While functional languages fit naturally for

data flow applications, they provide a rich variety of control constructs, making

them more suitable for control dominated applications. Furthermore, functional

languages provide a clean and simple semantic model, which performs all com-

putation by function application, thereby providing a moreabstract notation to

express computation.

We use Standard ML (SML) [9] to model the original system as well as its

LI version and compare both the models. SML offers an excellent ratio of ex-

pressiveness to language complexity, and provides competitive efficiency. SML

5

manages to combine safety, security, and robustness with a great deal of flexi-

bility because of its type and module system. Other featuresof the SML based

framework include:

• SML provides good expressiveness with its ability to treat functions as first-

class values, and its usage of higher-order functions. The availability of

imperative constructs provide great expressive power within a simple and

uniform conceptual framework.

• SML provides a high-level model which makes programming more efficient

and more reliable by automating memory management and garbage collec-

tion.

• SML does static type checking which detects many errors at evaluation time.

Error detection is enhanced by the use of pattern matching and by the ex-

ception mechanism.

• The SML module system is an extension of the underlying polymorphic

type system thereby providing separation of interface specification and im-

plementation. These facilities are very effective in structuring large pro-

grams and defining generic, reusable software components.

3.2 Preliminary Definitions

In this section, we show some of the definitions we use in the rest of the paper.

Let V be the set of data values and, T be a countable set of time stamps. Unless

otherwise specified, in this paper, we assume T =N = set of natural numbers. An

evente∈ V ×T is an occurrence of a data value with a particular time stamp.

However, in the systems we consider, a special event calledabsent eventdenoted

by τ may occur2. Therefore, the set of all events is denoted by E, whereτ ∈ E and

for all other e∈ E, e∈ V × T. When e∈ V × T it is called aninformative event.

2It may be caused due to lack of valid data in the producer or dueto the consumer’s request to
delay a transmission

6

A signals is defined to be a sequence of events, often denoted ase1e2e3 . . . where

ei ∈ E.

For the preliminary definitions, if s is a signal, s[i] denotes theith event, hence

either s[i]∈V ×T or s[i] = τ. The set of all signals is denoted by S. The signals

can be either input signals or output signals of a process. Wealso distinguish

Stall signalsfrom all signals in the system. A stall signalst is a sequence of

boolean events, i.e.,st[i] ∈ Bool×T The set of all stall signals is denoted byST .

In our system, IPs are hardware modules that map input signals to output signals,

therefore in this paper we refer to them as processes. A processp is a functionSn

−→ Sm where n, m are natural numbers. A synchronous system consists of these

processes where zero-delay communication and zero-time computation among

these processes happen at the global clock edge.

In the remainder of this section, we define a few terms and notations that are

used throughout the paper.

Definition 1 Given one tuple of m elements and another of n elements,
J

creates

a tuple of m+n elements.

< a1,a2, . . . ,an >
J

< b1,b2, . . . ,bm > = < a1,a2, . . . ,an,b1,b2, . . . ,bm >

Definition 2 Given two tuples of n events and n signals respectively,
L

creates a

tuple of n signals with the n events appended to the n signals.

< e1,e2, . . . ,en >
L

< s1,s2, . . . ,sn > = < e1⊕ s1,e2⊕ s2, . . . ,en⊕ sn > where

e1⊕s1 = s′′ is a signal such that s′′1 = e1s1

Definition 3 Vectni=1(exp(i)) = <exp(1),exp(2),· · ·,exp(n)> where, exp(i) is an ex-

pression s.t. exp(k) is a textual replacement of i by k.

Definition 4 Latency Equivalence:Two signals s1 and s2 are said to be latency

equivalent, s1 ≡e s2 ⇔ F (s1) = F (s2), where

7

F : S→ S be defined as,F (s) = f (s,1,n) and,

f (s, i,n) =



















f (s, i +1,n), i f s[i] = τ

s[i], i f (i = n)

s[i]⊕ f (s, i +1,n), otherwise

F takes a signal as input and outputs a signal dropping allτ events, but preserving

all informative events. The above definition assumes that n is the length of the

signal and signal is assumed to be finite. If s is infinite, thenthe above definition

changes slightly.

If the output signals of two systems are latency equivalent given the same input

signals, then these systems are said to be latency equivalent.

Definition 5 Sequential composition: Let p1 and p2 be two processes where, p1

: S→ S and p2 : S→ S then p2◦ p1(s) = s′ is called a sequential composition.

Definition 6 Feedback composition[13]: Given a process p:(S×S)→ (S×S)

with two input signals and two output signals, the feedback process FBp(p) : S→

S is defined as FBp(p)(si) = sk where p(si,sj) = (sj ,sk). The behavior of the

feedback is defined by the fixed point semantics.

4 LI Refinement Steps

In this section, we show a transformation procedure to design a LI system.

The transformation of a synchronous system to a LI system is shown in Figure 1.

The steps to LIP refinement are as follows:

1. We start with a collection of synchronously communicating components.

These components can be custom-made modules or IP cores.

2. Approximate floor planning and interconnection routing are done by design

engineers to check for long interconnects. If all communication can be done

in a clock cycle, then there is no need for LIP refinement.

8

Figure 1. Refinement steps to LI implementation

3. All modules are encapsulated with a block of control logic. This encapsu-

lation may include adding control logic that controls the flow of the events,

buffers, control stations, repeater stations etc to enablecorrect transmission

of data with the LIP. Once each process is encapsulated, verification is done

to ensure its correctness, meaning that they behave similarto the original

processes. By correctness here, we mean that if two processes are given

the same set of input events, then the order of the informative events on its

output signals are the same. We call thislatency equivalence3.

4. Estimation using floor planning and interconnect routingis done again, this

3Two signals are said to be latency equivalent if both signalshave the same order of informative
events

9

time with the encapsulated processes to relocate and evaluate the delays on

the long interconnects.

5. After finding the delays on the long interconnects, the designer can then seg-

ment those long interconnects with additional processes containing buffers,

latches, forwarding stations, etc to ensure that data is properly communi-

cated through the long interconnects. Depending on the delay of the inter-

connect, the events can be compared from the point they are placed on the

signal to the point they leave the signal.

6. Floor planning and interconnect routing is done again to ensure that no long

interconnects exist in the system.

4.1 SML based LIP description

In this section, we describe the components of the LI framework and its imple-

mentation in SML. A finite signal is modeled as generic list, whereas an infinite

signal is written as delayed function application as shown in Listing 1.

Listing 1. Finite and Infinite Signal

(∗ D e f i n i t i o n of a f i n i t e s i g n a l ∗)

2 d a t a t y p e s i g n a l = n i l | ’ a : : ’ a l i s t

4 (∗ D e f i n i t i o n of an i n f i n i t e s i g n a l∗)

d a t a t y p e i n f s e q = n i l | cons of ’ a ∗ (u n i t −> i n f s e q)

In SML, for our convenience we formulate an event to be a list of two el-

ements, where the first element is the value and the second element identifies

whether the event is an informative event or an absent event (eg. ej = [3,1] is the

jth event with 3 as the value and 1 as the identity of the event4). Hence, a signal

can be formulated as a list of events. (eg:si = [[1,1],[2,1],[3,0],. . .]).

The refinement steps for transforming a synchronous system to a LI system

can be thought of as a two stage operation. The first stage involves encapsulating

41 corresponds to an informative event and 0 corresponds to anabsent event

10

the synchronous components and the next stage involves refining the interconnects

to make them consistent with the flow of events. These stages are shown in the

steps in Figure 1. In the first stage, each module is encapsulated with an equalizer.

An equalizer is a process instantiating template that givenn input signals and a

stall signal, it producesn output signals andn stall signals. The functionality of

the equalizer can be divided into three modes:

1. Disable mode: In this mode, the equalizer gets a stall event on its input stall

signal. In this case, the equalizer outputs absent events onall its output

signals and enables all the output stall signals.

2. Absent input mode: In this mode, the equalizer receives an absent event on

any of its input signals and a stall disabled value on its input stall signal.

In this case, the equalizer outputs absent events on all its output signals and

stalls only those processes from which it received an informative event.

3. Valid mode: The equalizer receives informative events on all its inputsig-

nals and its stall input is false. At this time, the equalizerplaces informative

events it received from its input signals to the output signals.

The formal model of the equalizer is shown below. Thei f -elseconditions

illustrate the functionality of the equalizer based on its modes.

Definition 7 An Equalizer functionE : (Sn×ST) −→ (Sn×ST
n) is defined as:

E (s1, · · · ,sn,stall) = f(s1, · · · ,sn,stall,1,1, · · · ,1) where,

f(s1, · · · ,sn,st1 :: st, i1, i2, · · · , in) =

if(st1 = F) then

if(∃n
j=1 (sj [i j]) = τ) then /* Absent input mode */

< τ,τ, . . . ,τ >
J

Vectnj=1(exp1(j))
L

f(s1, · · · ,sn,st,Vectnj=1(exp2(j)))

else /* Valid Mode */

Vectnj=1 (sj [i j])
J

< F, . . . ,F >
L

f (s1, · · · ,sn,st,Vectnj=1(i j +1))

11

else /* Disable mode */

< τ,τ, . . . ,τ >
J

< T, . . . ,T >
L

f(s1, · · · ,sn,st,Vectnj=1(exp2(j)))

exp1(j) : if (sj [i j]) = τ then F else T

exp2(j) : if (sj [i j]) = τ then ij +1 else ij

The function f takes arguments i1, i2, · · · , in to index s1,s2, · · · ,sn to access the respective

events. Here, s = st1::st means that st1 is the first element and st is the rest of the signal.

T and F denote the true and f alse values of the stall event.

Listing 2 shows the implementation of theequalizerprocess in SML. The

equalizer reads one event from all the input signals of a process along with an

event from the stall input. It then checks if all the events ata time are informative.

The check for events is done through theetypesandin f o functions (lines 6-13).

The functionality setting the stall values forDisable modeis done by thestallon

function and the output is given bye3 (line 21). The stall values when the equal-

izer is inabsent event modeis set bystallsetfunction and the output is given by

e2 (line 20). Finally, thevalid modeoutput is given bye1 (line 19).

Listing 2. Equalizer

fun e q u a l i z e r () = fn s => fn s t => f (s , s t , i n d e x s t a r t (l e n g t h (s))

2

fun f ([] , s t 1 : : s t ,) = [] | f (, [] ,) = [] | f (, , []) = [] |

4 f (s , s t 1 : : s t , i) =

l e t

6 fun e type (x 1 : : x 2) = x2| e type ([]) = n i l

fun e t y p e s [] = [] | e t y p e s (x 1 : : x) = e type (x1) @ e t y p e s (x)

8 fun i n f o [] = f a l s e |

i n f o (x 1 : : []) = i f (x1 = 1) then t r u e e l s e f a l s e|

10 i n f o (x 1 : : x) = i f (x1 = 1) then (i n f o (x)) e l s e f a l s e

v a l a l l e v e n t s = e (s , i) (∗ Events from a l l t h e s i g n a l s a t a t ime∗)

12 v a l a l l i n f o = i f i n f o (e t y p e s (a l l e v e n t s)) = t r u e

then t r u e e l s e f a l s e (∗ True when a l l e v e n t s a r e i n f o r m a t i v e∗)

14 fun s t a l l o f f (0) = [] | s t a l l o f f (n) = [1] @ s t a l l o f f (n−1)

fun s t a l l o n (0) = [] | s t a l l o n (n) = [0] @ s t a l l o n (n−1)

16 fun f l i p v a l (x) = i f x =1 then 0 e l s e 1

fun s t a l l s e t ([]) = [] | s t a l l s e t (x 1 : : x) = [f l i p v a l (x1)] @ s t a l l s e t (x)

18

12

v a l e1 = [a l l e v e n t s , [s t a l l o f f (l e n g t h (a l l e v e n t s))]]

20 v a l e2 = [t a u e v e n t s (l e n g t h (s)) , [s t a l l s e t (t a g s (a l l e v e n ts))]]

v a l e3 = [t a u e v e n t s (l e n g t h (s)) , [s t a l l o n (l e n g t h (a l l e v e nt s))]]

22 i n

(case (s t 1) o f

24 1 => (i f a l l i n f o = t r u e

then ([e1] @ f (s , s t , i n c r e m e n t i n d e x (i)))

26 e l s e ([e2] @ f (s , s t , incrementempty (i , e t y p e s (a l l e v e n t s))))

) |

28 0 = > ([e3] @ f (s , s t , i)) |

= > [])

30 end

The equalizerprocess is then sequentially composed with the synchronous

process to form the shell of the process.

The next stage of the refinement methodology involves refining the long inter-

connects by inserting processes that not only ensure correct flow of events from

one process to another, but also ensure that the delay in between the events is

minimized. The long interconnects are refined by insertingbridgeprocesses (List-

ing 3). A bridge is formed by sequential composition of asplitter and amerger

process (Figure 2). Eachbridgeprocess has one input signal and one output sig-

nal. The delay on the bridge is modeled by theDelayprocprocess (line 1).

Figure 2. Bridge

Listing 3.Bridgeprocess

fun Br idge (n) = fn s => Delayproc (n) (merger (n) (s p l i t t e r (n) (s)))

Thesplitterand themergerprocess are connected byn interconnects wheren

is the delay on the long interconnect. Hence,splitterprocess hasn output signals.

13

This process contains simple placement logic for the placement of events on these

n signals. The splitter is implemented at the output of a process, and it transfers

events on the corresponding signal. The splitter only places one event on one of

the output interconnects and absent events are placed on therest of the signals

at a particular time stamp. Assuming that there arei events on the input signal

of the splitter, at every cycle, theith event is placed on thenth signal based on a

rotational scheme. For example, if the delay on the interconnect is 3 cycles, then

in the current cycle, the first element will be placed on the first signal and absent

events will be placed on the other two signals. In the next cycle, the second event

will be placed on the second signal and absent events will be placed on the first

and third signals and for the third event it will follow the scheme. After the third

event is placed, in the following cycle, the fourth event will be placed on the first

cycle again. This rotation scheme will continue for the restof the events. This

functionality is illustrated by the formal definition shownbelow:

Definition 8 SplitterH is a process, s.t.,H (s) = (s′1,s
′
2, . . . ,s

′
n) where

(s′1,s
′
2, . . . ,s

′
n) = h(v,n,1) and,

g(n) =







τ, i f n = 1

τ
J

g(n−1), otherwise

f (x,n, i, j) =







x
J

g(n− j), i f i = 1

τ
J

f (x,n, i −1, j +1), otherwise

h(x :: y,n, i) =







f (x,n, i,1)
L

h(y,n,1), i f i = n

f (x,n, i,1)
L

h(y,n, i +1), otherwise

Here, s= x :: y means that x is the first event of the signal s and y is rest of the signal.

The SML implementation of thesplitter process is shown in Listing 4. An

input signal and the interconnect delay is given to thesplitter process. One event

is read from the input signal andinserteventfunction (line 6) places the event from

14

the input signal to one of the interconnects and absent events are placed on rest

of the interconnects. The events are placed in the rotational scheme as illustrated

earlier.

Listing 4. Splitter

fun s p l i t t e r (n) = fn s => f (s , 1 , n)

2

fun f ([] , ,) = [] |

4 f (x1 : : x , i , n) =

l e t

6 fun i n s e r t e v e n t (, j , 0) = [] |

i n s e r t e v e n t (y1 , j , n) = (i f n = j

8 t hen [y1] @ i n s e r t e v e n t (y1 , j , n−1)

e l s e [[0 , 0]] @ i n s e r t e v e n t (y1 , j , n−1))

10 i n

i f (i = n)

12 t hen [i n s e r t e v e n t (x1 , i , n)] @ f (x , 1 , n)

e l s e [i n s e r t e v e n t (x1 , i , n)] @ f (x , i +1 , n)

14 end

Contrary to the splitter, we implement amergerthat takesn input signals and

outputs one signal. The merger also extracts one event from the input signals

based on the rotational scheme as illustrated earlier and places it on the output

signal. The functionality of themergeris formally defined below:

Definition 9 MergerM is a process, s.t.M (s1,s2, . . . ,sn) = s′ where

s′ = g((x1 :: y1,x2 :: y2, . . . ,xn :: yn), n, 1) and,

f (x :: y,n, i) =







x, i f i = n

f (y,n, i +1), otherwise

g((x1 :: y1,x2 :: y2, . . . ,xn :: yn),n, i) =































f ((x1,x2, . . . ,xn),n, i)⊕

g((y1,y2, . . . ,yn),n,1), i = n

f ((x1,x2, . . . ,xn),n, i)⊕

g((y1,y2, . . . ,yn),n, i +1), otherwise

s1 = x1 :: y1, s2 = x2 :: y2, · · · sn = xn :: yn,

15

The SML representation of the merger is shown in Listing 5. Theextractevent

function extracts one event from all signals at a time (line 3). Extraction of events

from the signals is done in similar way as they are placed on the interconnects by

the splitter.

Listing 5. Merger

fun merger (n) = fn s => g (s , n , 1)

2

fun g ([] , n , i) = [] | g (x1 : : x , n , i) =

4 l e t

fun e x t r a c t e v e n t ([] , n) = [] | e x t r a c t e v e n t (x1 : : x , n) =

6 (case (n) o f

1 => x1 |

8 = > e x t r a c t e v e n t (x , n−1))

in

10 i f (i = n)

then [e x t r a c t e v e n t (x1 , i)] @ g (x , n , 1)

12 e l s e [e x t r a c t e v e n t (x1 , i)] @ g (x , n , i +1)

end

After the refinement of all the components and the long interconnects of the

synchronous system, all the components are composed together. The input se-

quence of the splitter and the output sequence of the merger are equivalent, since

the order of events written by the splitter on then output signals and the order of

events read by the merger from itsn input signals is the same. Therefore, the flow

of events from the output of one shell across the long interconnect to the input

of the corresponding shell is maintained. The stall signalsconnecting the com-

ponents work on the feedback semantics. In functional languages, the feedback

is defined by the fixed-point semantics. The fix point is computed for each event.

Listing 6 shows the fixed point computation for the feedback semantics.

Listing 6. Feedback Process

fun fb (p) = f i x p t (p , s , [] , l e n g t h (s)+1)

2 (∗ The f i x p o i n t i s computed on even t b a s i s∗)

fun f i x p t (q , s , sout , 0) = s o u t | f i x p t (q , s , sout , n) =

4 f i x p t (q , s , (q s s o u t) , n−1)

16

4.2 Check for Correctness

Once we have the LI system and the original synchronous system, we have to

verify if they are latency equivalent in order to satisfy theproof obligation. We

do this by checking if the outputs of the two systems are latency equivalent given

the same input sequence. The comparator is modeled which is areduced version

of the equalizer. ThisEqcomparatorprocess compares the order of informative

events output by the two systems. In the case when an absent event is seen on one

of the output signals, it is discarded and the next event is considered on the same

signal. The informative events on the two output signals arecompared in sequence

to ensure correct functionality. The LIP system satisfies the proof obligation if the

output the two systems is latency equivalent, when given thesame inputs. Figure 3

shows the setup of the problem. The SML code of theEqcomparatoris shown in

Listing 7.

Listing 7. Eqcomparator

fun Eqcomparator () = fn s1 => fn s2 => compare (s1 , s2 , 1 , 1) ;

2

fun compare ([] , , ,) = [] |

4 compare (, [] , ,) = [] |

compare (s1 , s2 , i , j) =

6 l e t

v a l even t1 = e x t r a c t e v e n t (s1 , i) ;

8 v a l even t2 = e x t r a c t e v e n t (s2 , j) ;

v a l v a l i d = i f even t1 = [] o r e l s e even t2 = [] then f a l s e e l s e t r ue ;

10 v a l v a l p r e s e n t =

i f v a l i d = t r u e

12 t hen i f t a g (even t1) = [1] a n d a l s o t a g (even t2) = [1]

then t r u e e l s e f a l s e

14 e l s e f a l s e ;

fun comp (x , y) = i f (x=y) then t r u e e l s e f a l s e ;

16 i n

i f v a l i d = t r u e a n d a l s o v a l p r e s e n t = t r u e

18 t hen (i f comp (va lue (even t1) , va lue (even t2)) = t r u e

then [t r u e] @ compare (s1 , s2 , i +1 , j +1)

20 e l s e [f a l s e])

e l s e i f v a l i d = t r u e

22 t hen i f (t a g (even t1)<> [0] a n d a l s o t a g (even t2)<> [0])

17

t hen [f a l s e]

24 e l s e i f (t a g (even t1) = [0] a n d a l s o t a g (even t2) = [0])

then compare (s1 , s2 , i +1 , j +1)

26 e l s e i f (t a g (even t1) = [0] a n d a l s o t a g (even t2) = [1])

then compare (s1 , s2 , i +1 , j)

28 e l s e i f (t a g (even t1) = [1] a n d a l s o t a g (even t2) = [0])

then compare (s1 , s2 , i , j +1)

30 e l s e [t r u e]

e l s e [t r u e]

32 end

Figure 3. Comparing synchronous system with its LI implementation

4.3 Case Study

We consider a case study of an adaptive modulator that consists of three IPs:

regulator, convolutor and analyzer. The regulator module takes an input signal

and a control signal and outputs based on the control signal by adding a thresh-

old value. This output is then multiplied with a masking value by the convolutor

module. The output of the system is given by the amplitude signal. The ana-

lyzer module outputs the control signal based on the input ofthe amplitude. The

connections of these components are shown in Figure 4.

With these three IPs, we follow the refinement steps described in Figure 1 to

construct the LI system. We have these three synchronous components. Early

floor planning and interconnect routing is done to find the delays on the intercon-

nects. We assume in this case that the regulated input signalis a long interconnect.

Hence, we encapsulate the modules with the equalizer and repeat floor planning

to find the delay on the interconnects. The long interconnectis then refined by

18

Figure 4. Adaptive Modulator

adding a bridge process. The new LI representation of the adaptive modulator is

shown in Figure 5. The SML implementation is done using the components de-

scribed in the previous section and is listed in the appendix. In order to check the

correctness of the LI model, we create a model containing theLI implementation

as well as the model with a zero communication assumption. Wefeed the same

input sequence to both models and verify the latency equivalence of their outputs

as described in Section 4.2.

Figure 5. LI based Adaptive Modulator

The case study presented here is just an example to show how the LI refine-

ment of a synchronous system can be done and validated against its original im-

plementation. Any deterministic functionality can be integrated in a synchronous

module and can be compared with its LI refinement. Since, changing the func-

tionality is easy in a functional framework, many case studies can be analyzed

successfully. On the other hand the functionality cannot bechanged and verified

easily when the system is being formally verified using a model checker.

19

5 Multiclock extension to LIP

The LI systems proposed earlier have been mainly targeting single clock syn-

chronous systems where all components operate on the same clock. We now

consider extending the existing LI implementation for multiclock systems where

different components with different clocks are connected via arbitrarily long inter-

connects. The need for a system with components having different clocks arises

when different IP blocks from different vendor are integrated in the same system.

At this time, however, we are only permitting the use of components with defined

clock relations. By clock relation, we mean that there is a known ratio of the eval-

uation cycle between different components. In the SML framework, the notion of

clock is defined by the evaluation cycle of the processes. This approach therefore

makes it possible to connect components with known clock ratios.

We modify our original refinement methodology for multiclock refinement.

Before encapsulation of the processes, we add anInsert and aStrip process to

each synchronous component of the system. TheInsert process insertsn absent

events for each event on the original incoming signal wheren is the ratio of events

on the incoming signal to the number of events evaluated by the process in each

cycle. The output of theInsert process is then given to the original process. The

formal definition of theInsertprocess is shown below:

Definition 10 Insert is a process, s.t.I (s) = s′ where

s′ = g(y,n) and,

f (n) =







τ, i f n = 1

τ
J

f (n−1), otherwise

g(x1 :: x,n) = (x1
J

f (n))
L

g(x,n)

We also place aStrip process at the output of the synchronous component.

This strip process removes the extra absent events insertedby theInsert process.

The formal definition of theStripprocess is given below:

20

Definition 11 Strip is a process, s.t.W (s) = s′ where

s′ = g(y,n) and, t(x1 :: x) = x

f (s,n) =







t(s), i f n = 1

f (t(s),n−1), otherwise

g(x1 :: x,n) = f (x1,n)
L

g(x,n)

Once these processes are composed with the original component, we can then

follow the refinement methodology. In SML, we can easily modify our aforemen-

tioned LI system to an LI system containing components with different evaluation

cycles. The SML implementation of the two processes is show below:

Listing 8. Multiclock Interface

fun I n s e r t (n) = fn s1 => h (s1 , n)

2 fun h ([] ,) = [] | h (x1 : : x , n) =

l e t

4 v a l s i g 1 = [x1] @ t a u s a l l (n)

in

6 [s i g 1] @ h (x , n)

end

8

fun S t r i p (n) = fn s1 => f (s1 , n)

10 fun f ([] ,) = [] |

f (x1 : : x , n) =

12 l e t

fun dr [] = [] | dr (x : : x f) = x f

14 fun drop ([] ,) = [] | drop (s , 1) = dr (s) |

drop (s , i) = drop (dr (s) , i−1)

16 i n

drop (x1 , n) @ f (x , n)

18 end

6 Conclusion and Future Work

We propose a functional programming based framework using SML for the

validation of LI systems against their original system implementations. The in-

21

herent denotational model of functional languages makes them well suited to for-

malize such complex protocols. In this framework, computation within the blocks

can be changed without much additional effort whereas in formal verification

any change of the model results in time consuming verification runs. We show

a refinement methodology that defines how to transform a system consisting of

synchronous blocks assuming zero delay communication to a corresponding LI

system with long interconnects. AnEqcomparatorcomparator process is mod-

eled that does a latency equivalence check between the outputs of the original

system and its LI version given the same input sequence. We model a set of LI

components, anequalizer, asplitterand amergerprocess, with which any deter-

ministic synchronous system can be implemented. We extend this with processes

insertandstrip to multiclock systems where IPs with known clock ratios are also

allowed.

Another possible extension for this is to allow unknown clock ratios. This

would be another step towards being able to handle GALS systems where compo-

nents can have clocks that are entirely unrelated.

References

[1] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The theory of

lantency insensitive design.IEEE Transactions on Computer Aided Design

of Integrated Circuits and System, 20(9):1059–1076, 2001.

[2] M. Casu and L. Macchiarulo. A new approach to latency insensitive design.

In Design Automation Conference, 2004.

[3] P. Glaskowski. Pentium 4 (partially) previewed.Microprocessor Report,

14(8):10–13, 2000.

[4] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, andDoug Burger.

Clock rate versus ipc: the end of the road for conventional microarchitec-

tures.SIGARCH Comput. Archit. News, 28(2):248–259, 2000.

22

[5] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Copingwith latency in SoC

design. IEEE Micro, Special Issue on Systems on Chip, 22(5):12, October

2002.

[6] Edmund Clarke, Orna Grumberg, and Doron Peled.Model Checking. The

MIT Press, 2000.

[7] M. Singh and M. Theobald. Generalized latency-insensitive systems for

single-clock and multi-clock architectures. InDesign, Automation and Test

in Europe (DATE’04), 2004.

[8] Syed Suhaib, David Berner, Deepak Mathaikutty, Jean-Pierre Talpin, and

Sandeep Shukla. Presentation and formal verification of a family of proto-

cols for latency insensitive design. Technical report, Virginia Tech, 2005.

[9] R. Milner, M. Tofte, R. Harper, and D. MacQueen.The Definition of Stan-

dard ML - Revised. MIT Press, 1997.

[10] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli.

A methodology for correct-by-construction latency insensitive design. In

In Proc. International Conf. Computer Aided Verification, pages 309–315,

November 1999.

[11] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency

insensitive protocols. In11th International Conference on Computer-Aided

Verification, volume 1633, pages 123–133, Trento, Italy, 07 1999. Springer

Verlag.

[12] E. Lee and T. Parks. Dataflow process networks, May 1995.

[13] Axel Jantsch.Modeling Embedded Systems and SoCs - Concurrency and

Time in Models of Computation. Morgan Kaufmann, 2001.

23

APPENDIX

Listing 9. SML Implementation for Adaptive Modulator

fun r e g u l a t e ([] ,) = [] | r e g u l a t e (, []) = [] |

2 r e g u l a t e (x1 : : x , y 1 : : y) =

i f t a g (y1) = [1] a n d a l s o va lue (y1) = 1

4 t hen [[va lue (x1) − 1 0 , 1]] @ r e g u l a t e (x , y)

e l s e [x1] @ r e g u l a t e (x , y)

6

(∗ # 1 and # 2 c o r r e s p o n d s to t h e f i r s t s i g n a l and second s i g n a l∗)

8 fun Reg () = fn s1 => fn s2 => r e g u l a t e (s1 , s2)

fun Regu la te () = fn s1 => fn s2 => fn s t => Reg () (# 1 (Punz ip ()

10 (E q u a l i z e r () s1 s2 s t))) (# 2 (Punz ip () (E q u a l i z e r () s1 s2 s t)))

12 fun mul (, []) = [] | mul ([] ,) = [] | mul (x : : x f , y 1 : : y) =

i f t a g (x) = [1] a n d a l s o t a g (y1) = [1]

14 t hen ([[va lue (x) ∗ va lue (y1) , 1]] @ mul (xf , y))

e l s e ([[0 , 0]] @ mul (xf , y)) ;

16

fun Con () = fn s1 => fn s2 => mul (s1 , s2) ;

18 fun Convo lu te () = fn s1 => fn s2 => fn s t => Con () (# 1 (Punz ip ()

(Equal izerTwo () s1 s2 s t))) (# 2 (Punz ip () (Equal izerTwo ()s1 s2 s t)))

20

fun comp (a , b) = i f a> b then [1 , 1] e l s e [0 , 1]

22 fun compsig ([] ,) = [] | compsig (x1 : : x , y1) = i f t a g (x1) = [1]

then ([comp (va lue (x1) , y1)] @ compsig (x , y1))

24 e l s e ([[0 , 0]] @ compsig (x , y1)) ;

fun A l t (a) = fn s1 => compsig (s1 , a)

26 fun A l t e r n a t e (a) = fn s1 => fn s t =>

A l t (a) (# 1 (Punz ip2 () (E qua l i ze rOne () s1 s t)))

24

