Development of a Visual Refinement- and
Exploration-Tool for SpecC

David Berner
Prof. Dirk Jansen
Prof. Daniel D. Gajski

Diplomarbeit
February 22, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

mail@davidberner.de
http://www.cecs.uci.edu/"berner

Development of a Visual Refinement- and
Exploration-Tool for SpecC

David Berner
Prof. Dirk Jansen
Prof. Daniel D. Gajski

Diplomarbeit
February 22, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

mail@davidberner.de
http://www.cecs.uci.edu/"berner

Abstract

Thisdocument describes the devel opment of RESpecCT, a refinement and expl oration-tool for the SpecC
technology. RESpecCT is a graphical tool which assists the designer starting from the functional or spec-
ification model of the design in refining it using the SpoecC methodology through different levels to the
implementation- or register transfer-level. It visualizes information in a way to simplify the process of tak-

ing decisions about details of the design, gives these decisions to different refinement tools and visualizes
their results.

Masterthesis of David Berner i

Erklarung

Ich versichere, dass ich diese Diplomarbeit salbdifj verfasst und keine anderen als die angegebenen
Hilfsmittel verwendet habe.
Irvine (USA), den 22. Februar 2001

David Berner

Diese Diplomarbeit ist urheberrechtlich gest#t; unbeschadet dessen wird folgenden
Rechtsibertragungen zugestimmt:

e der Ubertragung des Rechts zur Vervatfgung der Diplomarbeitui’ Lehrzwecke an der Fach-
hochschule Offenburg16 UrhG),

o derUbertragung des Vortrags-, Auffitungs-, und Vorfhrungsrechtsui' Lehrzwecke durch Profes-
soren der Fachhochschule Offenbujyq UrhG),

o der Ubertragung des Rechts auf Wiedergabe durch Bild- oder dgetran die Fachhochschule
Offenburg §21 UrhG).

Irvine (USA), den 22. Februar 2001

David Berner

Masterthesis of David Berner i

Acknowledgment

| would like to thank Prof. Dr. D. Jansen from the Fachhochschule Offenburg and Prof. Dr. D. Gajski from
the Center of Embedded Computer Systems, University of California Irvine for acting as advisors for this
thesis. They gave this great opportunity to do it abroad in this marvelous environment.

Many thanks to Andreas Gerstlauer who was always there for questions and discussions (in English as
well as in German).

Thanks also to all the members of the SpecC group with whom i tried hard to do good work in order to
establish SpecC as a world standard.

Thanks to Judith who waited all this time so patiently for me.

Masterthesis of David Berner

Contents

1

Introduction

1.1 System-leveldesign
1.2 Goal o e
1.3 Related Work e

The SpecC L anguage

2.1 C+Spec=SpecC e
2.2 Special Features e
2.3 SUMMANY . . . o o e e e e e e

The SpecC M ethodology

3.1 OVEIVIEW . . . o v e
3.2 SpecificationModel e
3.3 Architecture Exploration e
3.4 Communication Synthesis
3.5 Summary . ..o

Specification
A1 Edit ..
4.2 ProjectManagement
4.3 Build . ..
4.3.1 Compiler e
4.3.2 Debugger e e
4.3.3 Simulation e
4.4 Profiling, Estimation
4.5 Architecture exploration e
451 Allocation.
452 Partitioning e e
453 Scheduling
4.6 CommunicationSynthesis
A7 SUMMANY . . . o o o e e e e e e e e

Choosing the Tools

5.1 Different GUIToolkits e

5.2 QTversuswxWindows e e

5.3 PyQl . . oo e
5.3.1 Advantages e e e e
5.3.2 Asmallexample

SIR Wrapper

6.1 WhatisSIR e
6.1.1 Example: SIBBehavior

6.2 SWIG e

6.3 Creating SWIiG-Interface-files

6.4 Moadificationsandproblems
6.4.1 Templates e
6.4.2 Typedefs . . o . . .

NGRS =

m\lmmm

Masterthesis of David Berner

6.4.3 PointertoPointer e
6.4.4 FunctionOverloading. e
6.45 OtherlIssues. i e
6.5 Compilation
6.5.1 UNiX o e e
6.5.2 WINdOWS o e
6.6 SUMMANY e e e

7 Implementation
7.1 FirstSteps o e e
7.2 TheMainWindow e e
7.2.1 BehaviorTree e e e
7.2.2 MDIWOrKSpace o o i i
7.3 Code Editor e
7.4 PropertiesDialog e
7.5 Profiler e e
75.1 Columns e e
75.2 PieChart e e
75.3 BarChart e e
7.6 Architecture RefinementTool...
7.6.1 AllocationDialog e
7.6.2 BehaviorMapping e e
7.6.3 Scheduling
7.7 Communication RefinementTool
7.7.1 BusAllocation.
7.7.2 ChannelMapping e
7.8 SUMMANY o e e e e e e

8 Example
8.1 Loading and ExaminingDesign
8.2 Profiling e e
8.3 Architecture Exploration
8.4 Communication Refinement
8.5 Refinementto RTL
8.6 SUMMArY e e e e

9 Conclusion
References

A Communication with the Tools
Al Profiler e e
A.2 Architecture RefinementTool..
A.3 Communication Refinement-tool

Masterthesis of David Berner \Y;

B Class Documentation 49
B.1 class allocationmp - Enhances the Dialag/location 49
B.1.1 |Inheritance hierarchy:. 49
B.1.2 Synopsis 49
B.1.3 Description e e 50
B.1.4 allocationimp.allocationimp.add(self) 50
B.1.5 allocationimp.allocationimp.allocchanged(item). 50
B.1.6 allocationimp.allocationimp.availchanged(item). 50
B.1.7 allocationimp.allocationimp.remove(self). 50
B.2 class ApplicationWindow - The MDI Application-window 50
B.2.1 Inheritance hierarchy:. 50
B.2.2 SYNOPSIS . . - . . e e e 51
B.2.3 Description e 51
B.2.4 RESpecCT.ApplicationWindowinit__(self) 52
B.2.5 RESpecCT.ApplicationWindow.sefine(self). 52
B.2.6 RESpecCT.ApplicationWindow.designUpdate(self). 52
B.2.7 RESpecCT.ApplicationWindow.edit(self, fleName=", path=", line=0) 52
B.2.8 RESpecCT.ApplicationWindow.findfile(self, dir, Jile 52
B.2.9 RESpecCT.ApplicationWindow.mapnl(self) 52
B.2.10 RESpecCT.ApplicationWindow.mgyp(self, click) 53
B.2.11 RESpecCT.ApplicationWindow.nop(self). 53
B.2.12 RESpecCT.ApplicationWindow.openDesign(self, fleName=None) 53
B.2.13 RESpecCT.ApplicationWindow.profile(self) 53
B.2.14 RESpecCT.ApplicationWindow.saveDesign(self,id=0)..... 53
B.2.15 RESpecCT.ApplicationWindow.seldetsses(self). 53
B.2.16 RESpecCT.ApplicationWindow.selgmbcs(self) 53
B.3 classbusnap e e 53
B.3.1 Inheritance hierarchy:. o 54
B.3.2 SYNOPSIS . . - . . e e 54
B.4 class SAtem - ItemclassfortheS@ee 54
B.4.1 |Inheritance hierarchy:. 55
B.4.2 SYNOPSIS . . - . . e e e 55
B.4.3 Description e 55
B.4.4 spedree.SCitem__init__(self, parent,inst,name)... 55
B.4.5 spedree.SCitem.changeBeh(self,ask) 55
B.4.6 spedree.SCitem.fill_column(self, column,name) 56
B.4.7 spedree.SCitem.getltemlist(self, Beh=None) 56
B.4.8 spedree.SCitem.mappedTo(self), 56
B.5 class SQree - Tree of Sir-behaviorinstances 56
B.5.1 |Inheritance hierarchy:. 56
B.5.2 Synopsis 56
B.5.3 Description 57
B.5.4 spedree.SCtree__init__(self,parent) 57
B.5.5 spedree.SCtree.arSchAnnotate(self) 57
B.5.6 spedree.SCtree.clear(self) 57
B.5.7 spedree.SCtree.coladd(self, notsmame, name=None) 58
B.5.8 spedree.SCtree.popup(self,item, point,col) 58

B.5.9 spedree.SCtree.readSC(self,file) 58

Masterthesis of David Berner vi

B.5.10 spedree.SCtree.readSIR(self,file), 58
B.5.11 spedree.SCtree.updateSelected(self) 58
B.6 class scalestruct - Small helperclass forscaling 58
B.6.1 SYnopsis 58
B.6.2 DescCription e 58
B.7 class QxBarChart - Barchart with arbitrary number of columnsandrows 59
B.7.1 Inheritance hierarchy:.o 59
B.7.2 Synopsis 59
B.7.3 Description e 59
B.7.4 barchart.QxBarChart.init__(self, parent=None, Chartdata=0, Style=1, name=", f=0) 59
B.7.5 barchart.QxBarChart.close(self,bool). 60
B.7.6 barchart.QxBarChart.doGeometry(self,R). 60
B.7.7 barchart.QxBarChart.drawChartData(self,P) 60
B.7.8 barchart.QxBarChart.drawHorizontalLines(self,P) 60
B.7.9 barchart.QxBarChart.drawLegends(self,P) 61
B.7.10 barchart.QxBarChart.drawScale(self,P). 61
B.7.11 barchart.QxBarChart.drawTitles(self,P) 61
B.7.12 barchart.QxBarChart.drawXLegends(self,P) 61
B.7.13 barchart.QxBarChart.paintEvent(self, PaintEvent) 61
B.7.14 barchart.QxBarChart.setChartData(self, Chartdata) 61
B.8 class QxChartData - Contains all the data fortheChart. 61
B.8.1 SYNOPSIS . . - . . . e e e 61
B.8.2 Description e 62
B.8.3 barchart.QxChartData.init_(self, dataf400, 80, 150 [111, 270, 543,
row_labels¥'breakfast’, 'lunch], collabels§'spam’, 'egg’, 'ham], title=") 62
B.9 class QxPie - Class representing the pie ofthewidget. 62
B.9.1 SYNOPSIS . . - . . i e e 62
B.9.2 Description e 63
B.9.3 piewidget.QxPielinit__(self) 63
B.9.4 piewidget.QxPie.append(self,slice) 63
B.9.5 piewidget.QxPie.arcLength(self,index) 63
B.9.6 piewidget.QxPie.arcStart(self,index) 63
B.9.7 piewidget.QxPie.at(self,pos)... 63
B.9.8 piewidget.QxPie.count(self) 63
B.9.9 piewidget.QxPie.insert(self, pos,slice) 63
B.9.10 piewidget.QxPie.sliceRatio(self,index) 63
B.9.11 piewidget.QxPie.sliceRatioAsPercentageString(self,index). 64
B.10 class QxPieWidget - Pie-Widgetclass. 64
B.10.1 Inheritance hierarchy:..o 64
B.10.2 SYNOPSIS 64
B.10.3 Description 65
B.10.4 piewidget.QxPieWidgetinit__(self, parent=0, name=0, f=0, pie=0, align=1,
show=64, explode=128) e 65
B.10.5 piewidget.QxPieWidget.addSlice(self, slice,pos) 65
B.10.6 piewidget.QxPieWidget.close(self,bool). 65
B.10.7 piewidget.QxPieWidget.doGeometry(self). 65
B.10.8 piewidget.QxPieWidget.drawLegends(self,P) 65

B.10.9 piewidget.QxPieWidget.drawSlices(self,P) 65

Masterthesis of David Berner Vii

B.10.10piewidget.QxPieWidget.drawText(self,P) 65
B.10.11piewidget.QxPieWidget.drawTitle(self,P) 65
B.10.12piewidget.QxPieWidget.explodeFlag(self,explode). 66
B.10.13piewidget.QxPieWidget.explodePoint(self, c) . C e e e e e, b6
B.10.14piewidget.QxPieWidget.legendsAlignFlag(self, allgn) e b6
B.10.15piewidget.QxPieWidget.paintEvent(self, paintev) 66
B.10.16piewidget.QxPieWidget.resizeEvent(self,resizeEV) 66
B.10.17piewidget.QxPieWidget.setPie(self, pie) 66
B.10.18piewidget.QxPieWidget.seata(self, data, title=", subtitle=", footer=", legendstitle=") 66
B.10.19piewidget.QxPieWidget.showFlag(self, show) . e ©66
B.11 class QxScale - Create a scale between two given double numbers 66
B.11.1 SYNOPSIS o e 67
B.11.2 DesCription e e 67
B.11.3 barchart.QxScale.init_(self, s=0, high=0) 67
B.11.4 barchart.QxScale.createScale(self), 67
B.11.5 barchart.QxScale.nuontervall(self, Highest) 67
B.11.6 barchart.QxScale.valueScaleRatio(self,it). 68
B.11.7 barchart.QxScale.zeroLineRatio(self) 68
B.12 class QxSlice - Sliceofapie 68
B.12.1 SYNOPSIS e 68
B.12.2 Description 68
B.12.3 piewidget.QxSlice.init_(self,v=0,label=0) 68
B.12.4 piewidget.QxSlice.setLabel(self,label) 68
B.12.5 piewidget.QxSlice.setValue(self,v), 68
B.12.6 piewidget.QxSlice.value(self) o oL 69
B.12.7 piewidget.QxSlice.valueString(self, precision=2) 69
C Code-examples 70
C.1 Headerfileof SIBBehavior 70
C.2 |Interface-file of SIRBehavior 72

C.3 SWIG interface-file generator; template.py, 75

Masterthesis of David Berner viii

List of Figures

O©CoOoO~NOULDWNPE

System-level Designinthe Y-Chart. 2
Language Comparison [1]. 3
The SpecC Methodology [1] o o 5
The small example-application.. 18
SIRLevel 1[3] e e e e 20
SIRLevel 2[3] e e e 21
The RESpecCT MainWindow 27
MDIWOrKspace o 29
Code Editor. e e 30
PropertiesDialog. e 31
Columns with Profiling Information 32
Pie-chartWidget. 33
Bar-chartWidget. 34
Processor Allocation. 35
NameenterDialog. e 36
Behavior Mapping. . - e 37
Allocation Of BUSSES. e 38
Map the Top-level ChannelstoBusses.. 38
Load an Example Design. 39
TheContext MENU. o 39
Variables ofthe Behavior. 40
Channels ofthe Behavior. e 40
Ports ofthe Behavior. e 40
Source-code Editor forthe Behavior. 41
Evaluating Dependencies while Deleting a Behavior. 41
View Profiling Results.. e 42
Allocating Processors forthe Design. 42
Mapping Behaviors to Processors. e 43
The Architecture Refinement Tool Introduces an Additional Level of Hierarchy.
Allocating Busses forthe Design. 44
Mapping of the Toplevel Channels. 44

The Communication Refinement Tool Inserts Protocols and, if necessary, Transducers.

43

45

Masterthesis of David Berner 1

1 Introduction

In 1965 Gordon Moore (co-founder of Intel) predicted that the transistor density of semiconductor chips
would double roughly every 18 months. In February 2001, Intel's Chief Technology Officer Pat Gelsinger
pointed out in the opening speech of the International Solid State Circuit Conference (ISSCC) in San
Francisco that by the end of this decade processors will reach 1 TIPS (Tera Instructions Per Second) at 30
GHz. These processors will consist of about 10 billion transistors.

A current Intel Pentium Il 1 GHz processor (codename coppermine) has about 28 million transistors,
two third of which actually represents the 256 kB on-die level 2 cache. The increase of designer productivity
measured in the number of processors designed has been only about 20% per year in the recent past. If we
project the same increase over the following nine years, in 2010 a processor would have less than 0.2 billion
transistors.

So how are we going to design the missing 9.8 billion transistors? Are we going to employ 50 times the
number of designers? Not likely. Certainly it is more desirable to increase the productivity of the designers
drastically. But how?

One possible answer is to use designs, that are highly modular and easily reusable in later generations of
products - IP-reuse. Another answer is to work at a higher level of abstraction.

1.1 System-level design

The highest level of abstraction is to perform synthesis directly from the system specifications. This approach
is called System Level Design (Figure 1). It means to write a system specification in a language as intuitive
as possible and to refine this specification down to the register transfer-level (RTL).

SpecCis alanguage (Section 2) and a methodology (Section 3) especially designed for system level design.
It's basic concept is not the one-button-push solution, but an assisted refinement process. It defines several
level of refinement at each of which the designer is provided with information in order to help him taking
decisions for the next refinement step. After the last refinement step the design is at RTL and synthesizable.

1.2 Goal

In the SpecC refinement-process there are several tools involved (Profiler, Architecture Refinement Tool,
Communication Refinement tool, SpecC compiler, etc.), but the user only wants to have to deal with one. So
we wanted to create a graphical user-interface which integrates all tools and assists the designer during the
whole refinement-process - from specification to transistor-level.

It was clear that this is a big task and that it would take several man-years to accomplish it, so given
the actual time-constraints, we focused on the specification of the project and the choice of the tools and
environment. Then it was important to create a stable and open basic framework which demonstrates the
basic concepts and would be easily understandable and expandable.

1.3 Related Work

SpecC is quite unique and there is still done research, so there is nothing which closely relates to it. Sure
there are several other approaches to System Level Design such as System C or VCC, but their concepts are

Masterthesis of David Berner 2

Behaviora Structural
Domain Domain
Processor

\\\\ ‘_—';r;cmrfloorplan ////
\\\\\ ////
\\\\——-._—-‘”//

Physical System floorplan

Domain

Figure 1. System-level Design in the Y-Chart.

totally different.

The Toshiba Corporation has made a tool called Visua Spec which isa GUI for SpecC. Visua Spec incor-
porates some of the functionality mentioned above, but it is not at all what we were anticipating. Thisiswhy
we started with this project from the beginning and called it RESpecCT (Refinement and Exploration-tool for
the SpecC Technology).

Masterthesis of David Berner 3

2 The SpecC Language

SpecC isalanguage.

It is not a language grown over centuries in order to adapt to constructs people like to express - like most
of the human languages, nor has it been devel oped and then expanded and adapted to different applications
people may have - like most of the programming languages. SpecC is a language devel oped for one special
purpose: system level design.

The main properties of SpecC are that it has an easily understandable syntax for machines as well as for
humans, it includes all constructs needed to describe a design as inherent parts of the language and it can be
used to describe adesign at all levels of development - from specification to register transfer level.

V eril&gd DSLtatechart$S pe c h alrday a SpecC

Behaviofral
HierarcryO O

S tructurna
o o

H ierarcHh

Concurrsg

Synchron

E xcepti
Handlin

Tim ing
State
Transitiqg

@ @
iz@Qion @
''® O
® O
& O

O 0o000 OO0

000 OO0
O0Oe@OOO0OO
OO0 @0 e OO

partly.upported fully support

Onotsupporte@

Figure 2: Language Comparison [1].

21 C+Spec = SpecC

The reason for creating SpecC as a new language was because there was no such thing. SpecC was started an
amethodol ogy (Section 3) and then Gajski and his group were looking for alanguage which could be used to
implement this design-flow best. Languages like C and Java are very well suited to write a functional model.
They have also the advantage, that many people know them so there is not much training necessary to get
people productive. On the other hand, these general purpose programming languages lack functionality when
it comes to the refinement. How am i going to describe e.g. paralelismin C? So if we want this to work,
we have to write additional libraries that add certain functionality to the language. Thisis possible, but it

Masterthesis of David Berner 4

gets somewhat inconsistent. System C e.g. takes this library-based approach. An advantageis that tools like
compiler, debugger and devel opment environment already exist. On the other hand describing mechanisms
like timing and concurrency is not very intuitive by using alibrary. Also, alibrary based approachis easy to
expand. This can be seen as an advantage e.g if a company wants to adapt it closer to their application, but
since everyone keeps changing it that much, it is impossible to have a set of tools handling al the constructs
of the language.

An other approach is to take existent design languages like VHDL and Verilog and try to fit them into the
whole design process. This approach turns out to be difficult, too since these languages are just not made for
high level descriptions. A functional description of a system in VHDL would either be already mapped to
certain architectures or would require to expand VHDL which would result in a new language as well.

SpecC tries to incorporate the advantages of both worlds while excluding the drawbacks. It uses ANSI-C
as abasiswhichiswell known, easily understandable and well suited for functional descriptions. It adds few
constructsfor handling missing functionality for the design flow like concurrency and hierarchy (Section 2.2).
The choice of the added statements once done properly, it will be very hard to change, since the compiler and
all tools depend on it. This makes SpecC easily to standardize.

2.2 Special Features

SpecC adds only seven magjor mechanismsto C. These are:

e Behavioral hierarchy

e Structural hierarchy

Concurrency

e Synchronization

e Exception handling
e Timing

e State Transitions

With the help of these mechanisms we are able to write a functional description of the design which can
then be successively refined to a cycle accurate description of the system. Details about particular constructs
can be found in the SpecC book [?]. There are also some small additions not mentioned here e.g. a true
boolean type. Details about those can be found in the SpecC Language Reference Manual [7].

2.3 Summary

The SpecC language was designed because there is no other language which fits - or can be fitted with
reasonable effort - into the SpecC methodology. It is executable on every stage of refinement, it is highly
modular because of the behavioral concept, supports design reuse and is complete in terms of supporting all
concepts currently used in embedded systems. All it's concepts are organized orthogonally, which resultsin
amore or less minimal solution and makes the use of the concepts consistent. AsANSI-C is used as a basis,
isis easy to understand and to learn.

Masterthesis of David Berner 5

3 The SpecC M ethodology

3.1 Oveview

The SpecC methodology defines the process to get from a functional system specification to an imple-
mentation on register transfer level (RTL) which can be given to a fab in order to actually produce the
chip. The methodology comprises four system-description models and transformations between these
models (Figure 3). Following the transformations, the systems move from the specification model over the
architecture model and the communication model to the implementation model. Each modd represents a
new level of refinement, introduces new concepts and properties into the design.

The main idea is to have a design with is simulateable at every stage of development and which - once
specified - does never have to be rewritten during the whole process, resulting in a failsafe and consistent
design.

|
|
N
A |
|
| n
|
| V alidatiog
- Analysig
r | E stim atipn
Architecture ekplo+n io}n
b

—
Allocation m .
P artitionin i

Schedulin|d

A

V alid a tid|
Analysig

r E stim atipn
Com municatio s elsls
Protocol ins ilo”nr 0 fO.

Interface synjth

Protocol inliping

Commun)ation

V alid a tid|
Analysig
E stim atipn

Im plem entaltion

.‘ |

|

S oftw pHeard w iﬁ%-r)t}
com pillastyonnth d kislL ib TRTY

|

|

|

|

|

|

|

|

|

|

V alid a tid|
Analysig
E stim atipn

Figure 3: The SpecC Methodology [1]

Masterthesis of David Berner 6

3.2 Specification M odel

The highest level of abstraction in system design is the functional description of the system. It describes the
wholesystemin detail but doesnot includeimplementation-detailsliketiming or partitioning. Whilein theory
every functional description resultsin avalid design, it does not forcedly result in a”good” implementation.
In order to get efficient results, one should stick to some simple rules in describing the functional model:

1. Separate communication and computation A basic ideain SpecC isto separate computation from com-
munication. Thismakesit easier afterwardsto try different protocol swithout touching the computation
part. In SpecC the computation is specified in behaviors, whereas the communication is contained in
channels. Input and output of behaviors have to be specified explicitly in order to be able to evaluate
data dependencies.

2. Expose paraldism
Without knowing how many processors you will usein the design and of which kind they are, the spec-
ification model should expose as much natural parallelism as possible. Modeling behaviorsin parallel
- if they are not dependent of each other - will give more space to optimizations during refinement. To
serialize behaviors which are modeled in parallel is not a complex task whereas to detect if a group of
serial modeled behaviors can be runin parallel is much more extensive.

3. Usehierarchy to reflect functionality
For every design of considerable size it is most important to structure it reasonably so the designer
can keep an overview over the whole project while being able to locate details in the design. A very
common and convenient way to do thisis to use hierarchy. Now if the concept of hierarchiesis used
wisely, the design stays both, easily understandable and easy to optimize and refine.

4. Choose proper granularity
Since the whole design is divided into behaviors, one question is then what to put in one behavior, and
where divide it into severa. If the size of the behaviorsis chosen too big, the refinement will not be
optimal. Since most optimizations are done on the behavior-level, the behaviors themselves remain
more or less untouched. If the size of the behaviorsis chosen too small, the design complexity will be
high. As a hint, behaviors should always represent basic algorithmic blocks. This will leave enough
room for optimization while leaving the design complexity on atolerable level.

5. ldentify system states

Following these rules, the design will be suitable for refinement and will profit as much as possible from the
advantages of the SpecC methodol ogy.

3.3 Architecture Exploration

Once the system is defined, the design gets into the refinement-phase. The first transformation is called
"architecture exploration”. It transfers the design from the specification level to the architecturelevel.

In the Architecture level, the architecture of the design is known. This means that the number and the
type of the processorsisfixed. In addition one has aready fixed what part of the design will be run on what
processor and in what order. To get to the architecture model there are basically three steps to be performed:

Masterthesis of David Berner 7

1. Allocation
During alocation the designer selects the number and type of processors to be used. To take these
decisions he has to evaluate the design in respect of size, speed, performance constraints, cost and
more. This data he can use in order to select processors from an | P-database where some additional
datais available.

2. Partitioning

Having decided which processors to use, one has to decide which part of the design will run on which
processor. This process is called partitioning or behavior-mapping. Again, thisis no easy step. To
perform it, the designer needs information about what loads different parts of the design cause. Also
he wants to know how much memory the behaviors use. Very important is the communication of
behaviors with other parts of the design. It is not advisable e.g. to put parts of the design on different
processors which communicate a lot between each other. This would cause much traffic on the bus
which connects them and is usually unwanted. Only in very specia cases one could want to do thisin
order to avoid other problems.

3. Scheduling
If all behaviors have been mapped to processors, the order they executeis still to befixed. Thisis easy
for behaviors which have already a serial decomposition, but can be hard for parallel and especially for
FSM-behaviors. With the scheduling there will be synchronization behaviorsintroduced. They manage
synchronization e.g. for originally parallel behaviors.

After architecture exploration we can make more accurate predictions about performance and cost. We
will know quite accurate execution-times since we know exactly the processor on which the code will run and
can make a very accurate simulation. On the Architecture Level there will be an additional level of hierarchy
which represents the components. Also there will be additional behaviors on this level synchronizing the
communi cation between these processors.

3.4 Communication Synthesis

Communication synthesisis the transformation from the architecturelevel to the communication level. While
on architecturelevel the communication between the componentsis still donein channels - which means that
it happensin no time (or predefined intervals) - on the communication level the processors communicate via
wires on a defined bus with a defined protocol. In order to perform the communication synthesis two steps
have to be accomplished:

1. Busallocation
For the bus-allocation one has to select one ore more busses out of an |P-database. They have to be
selected considering parameters like bandwidth, bit-width, cost, overhead and the protocol.

2. Channel mapping
After selecting the busses, the top-level channels have to be assigned to the busses. If the communicat-
ing processors do not support the bus-protocol, there have to be inserted additional components which
take care of the conversion of the different protocols. We call them transducers.

In the communication model we have not only correct execution times of behaviors, but we have a cycle
accurate model of the communication part of the design. Simulation will now reveal all timing problems that
were still undetected in the design.

Masterthesis of David Berner 8

3.5 Summary

The SpecC Methodology is a design methodology specifically tailored for system level synthesis. It starts
with a functional system description of the design and will be transformed over several steps to a cycle
accurate design description ready for implementation. The critical decisionsin the refinement process have
to be taken by a designer while straightforward - but still complex - refinement tasks are automated by tools.

This has the advantage that the design process is highly automated, but the designer still has the control
over the refinement process so the results are very efficient.

Masterthesis of David Berner 9

4 Specification

Before actually start working on a project, it is essential to specify as exactly as possible what one really
wants to have. At the very beginning it is not easy to specify the needs, also the specification has to be
reasonable in terms of resources like time and money.

In afirst task-analysis we investigated what actually had to be done, then we set priorities to get an order
what had to be done first and what was less important. Then we refined the results of the task-analysisin
order to obtain a quite precise specification.

4.1 Edit

An evident property of RESpecCT should be to read designs of different formats, convert them to others
and write them out again. The user wants to be able to browse the hierarchy of the design, to get provided
with al kinds of information about the design as well as about parts of the design or about single behaviors.
We want the user to be able to add change and delete behaviors or properties of behaviors like variables,
channels and ports. Some of these actions may be quite complex, there may be numerous dependencies and
prerequisites. In these cases the user should be assisted through the whole process with wizards.

In addition to a graphical display there should also be support to directly edit the code for people who
want to do quick changes in the code without having to deal with the GUI. However, these changes should
beimmediately reflected in the graphical representation in order to keep consistency between these two.

Apart of the hierarchical view, there should be a display of the connectivity inside behaviors. It could
look like a matrix with ports of the sub-behaviors over the connected variables, channels and ports. It will
be a sparse matrix with one connection per column. The user should be able to make or release connections
between items.

4.2 Project Management

A SpecC-design typically consists of several files. In order to keep the work organized, it is essential to be
ableto define aprojectswhich includes all files and keepstrack of their location. Such a design project could
store additional information like descriptions and comments for the whole projects as well as for every file.
Since SIR-files are binary and thus not portable over platforms, it is important to always keep recent versions
of SpecC-files.

As soon as we start with the refinement, the projects get an additional meaning. It keeps files of all four
design-levels (Specification level, Architecture level, Communication level and Register Transfer Level)
in order to be able to go back in the design-process, change decisions and repeat already performed steps.
This is very important, since during refinement behaviors are added to the design (e.g. for synchronization)
and changes are made to the hierarchy without being able to undo this. The reason for this is, that different
specifications can theoretically end up in the same architecture-level design.

The file-management also should support the user to keep consistency throughout al design-levels.
RESpecCT throws a warning if the user tries to modify the design on a level other than the specification
level. If he does anyway, consistency between the different levelsis no longer given. A correct simulation of
a higher level does then no longer mean that alower level simulation of the design has to be correct. A big
advantage of the SpecC-methodology would be lost. The correct way to do changes in the design is to go

Masterthesis of David Berner 10

back to the specification level - without losing the information of previously takes decisions - perform the
changes and then redo the refinement.

Another job of the project-management is to keep options like selected weight-tables, profiling options
and the name of the top-level behavior.

4.3 Build

At each time of the design-process, SpecC makes sure, that the design is simulateable. In order to perform
simulation three steps are to be done: Compilation, Debugging and the actual Simulation.

431 Compiler

The compilation of the design converts the SpecC-code into an SIR data-structure, then convertsit into C++
code which is then compiled into an executable. The SpecC-compiler should take care of al this.

4.3.2 Debugger

During the process of writing the specification of the design, it is very likely that the design is not correct
from the beginning. Therefore we have to provide a possibility to debug the design. Sinceit is actually the
C++-code not the SpecC-code which is complied, the actual line numbers reported by the debugger have to
be tranglated to the SpecC-line numbers. This should happen transparently so the user is not aware of that.

For more convenience it should be possible to set breakpointsin the code and to trace over it or step into
it.

4.3.3 Simulation

Running the actual simulation is pretty simple. The executable created by the compiler has to be executed.
However, it has to be made sure that there is a correct testbench around the design. Also the testbench could
require parameters which have to be provided and must be adjustable by the user. Last but not least, the
user wants to get feedback about the ssmulation in the interface. If an error occurs it could indicate a wrong
parameter or abug in the testbench. Also the regular output of the simulation alone could be instructive.

4.4 Profiling, Estimation

The main purpose of profiling and estimation is to get information out of the design which helps in taking
further design-decisions e.g. about what processors to use, what memory-size will be needed, what busses
aresuitableandtofind out at avery early stageif the design fulfills certain constraintslike price, speed or size.

Although these two mechanisms seem very similar in their goal, they do totally different things. Thisis
also dueto the fact that they are performed at different stages of the design.

Profiling can be performed at the very beginning. As soon as there is a specification which is semantically
and syntactically correct and an executable testbench, one can run the profiler. Like this we are able to
examine certain properties of the design while it is still growing. Fundamental errors can be detected early
and taken care of, without wasting too much time and money.

Masterthesis of David Berner 11

The profiler inserts statements into the design which produce information about operations performed in
the design at ssimulation-time. After smulation it evaluates this information and makes it available. Profiling
information comprises operations, memory-usage and communication-intensity on a per-behavior basis. For
every behavior we got then alot of information. There are 65 different operationstwo different categoriesfor
memory and for communication (in and out). Every category is divided into the 29 different data types. This
makes 2001 pieces of information per behavior. In addition the profiler extracts some statistical metrics out
of it. All thisinformation has to be available to the designer in the GUI in order to evaluate it. RESpecCT
should offer some general high-level metrics by default, but is able to deliver more specific information on
request.

The profiler also should support the mechanism of weight-tables. Weight tables are used to reflect
properties of the the actual architecture better in the results of the profiling. For example if the processor
we anticipate to use has a very slow multiplication-unit, multiplication-operations will be counted e.g.
three times, whereas additions are counted only once. Then, if the profiling counts 3 multiplications and 3
additions for a certain behavior, the number of total operations would be 12. This kind of information is
stored in aweight table. It makes the profiling produce more accurate results if we want to add up different
kinds of operations.

Estimation is a mechanism which can be used only after architecture exploration. While the profiler does
a dynamic analysis of the code, the estimator does only a static analysis. Together with the data from the
profiler and the results of the architecture exploration, it can provide more accurate values than the profiler.
Also you get absolute information about time of execution, while profiling only providesrelative information
about speed and performance.

Profiler aswell as Estimator are separate toolswritten in C++. They have to be integrated into RESpecCT
as ashared library. The data-exchange should be done entirely within the SIR-datastructure.

The sensitive point about profiling and estimation is to extract the right judgments out of the whole bunch
of information they provide. In order to optimize that, we have to develop clear and intuitive displays.
Displays which can display a lot of information at a time while emphasizing on the critical points. Since
there is never one display that can show all aspects, there have to be several which complement each other.

These displays could be:

e Columnsin the behavior tree
e Piechart
e Bar chart

o Table

4.5 Architecture exploration

As we already know, architecture exploration is the process of mapping the specification model to a certain
architecture. Thisincludesinsertion of components, and the synchronization between these.

Masterthesis of David Berner 12

451 Allocation

Thefirst step in the process of architecture exploration - consists of selecting one or several processors from
adatabase. In order to provide the user a basis of comparison, we haveto list the processors with some short
description as well as some details like performance, clock, area and cost.

Also we should be able to add and remove processors at any time. One processor can be selected several
times for same design, so the user has to assign them unique names.

452 Partitioning

During this phase the behaviors get mapped to the processors allocated. It is a quite critical step of the
refinement-process and has to be done carefully. There are some simple rules to respect. For example one
will always try to separate two blocks which are as independent as possible. One should always try to leave
behaviors together which communicate heavily with each other.

Also it can be advisable to separate behaviors which mainly perform the same kind of operations. If there
is agroup of behaviors which seem to use mainly 32 bit multiplications, we could try to map them together
to a processor which is optimized for that.

After partitioning is completed - which means all behaviors except the ones belonging to the testbench
are mapped to a processor - one can run the architecture refinement tool. It will reorganize the hierarchy,
introduce anew level of hierarchy representing the processors and add behaviors which manage the synchro-
ni zati on between the processors.

453 Scheduling

Only after partitioning is completed and the refinement-tool has processed the data-structure, we can start to
do the scheduling. Scheduling meansto assign an order to the behaviors on each processor. Thisis easy for a
seria behavior, but can be critical for parallel or other behaviorse.g. FSM. There the user has to be aware of
the dependencies between the behaviors and be able to interpret them correctly. The user can also "fl atten”
parts of the hierarchy, that means do the scheduling not only of one level, but include behaviors from lower
levels.

Though the GUI will display the scheduling decisions, the change in the data-structure will not be per-
formed unless the user actually runs the refinement-tool again. After this step, there will be no more seria
structures inside one processor. The design is now on the level of the Architecture model.

4.6 Communication synthesis

To get from the architecture model to the communication model, we have to do the communication synthe-
sis. The procedureresemblesthe architecture refinement: First, there hasto be done all ocation, then mapping.

Allocation means basically to select the busses one wants to use in the design out of a database and give
them aunique name. Like in the architecture refinement, there should be displayed some data with the busses
like bits/sec, frequency or number of bitsin order to let the user make a conscious choice, even if heis not
familiar with all the busses.

For the mapping, all top-level channels have to be assigned to a bus. A top-level channel is achannel over
which the processors communicate. There may be a lot of other channelsin the design, but since usualy

Masterthesis of David Berner 13

there are no busses inside of components, we do not have to worry about them. All the channels have to be
mapped to a bus, and to every allocated bus has to be assigned at least one channel.

Once the mapping is completed, the communication refinement-tool can be called. 1t will again change
the structure of the SIR. There will be suitable protocols inserted for the busses and the top-level channels
will be converted into actual bus-wires. These will be represented as variables.

477 Summary

This chapter illustrates how much work isinvolved in the project and how afirst version could look like. Even
after al this has been implemented, one could think of awhole bunch of other functions, not mentioned so far.

To get the project started, we had to define a priority-list what the first implementation would ook like and
what will be targeted in the further development. Given the initial time-restriction of six months including
the preparation-phase, we decided to concentrate on a basic framework. There we should integrate the SIR
and proveit’s usability. We should provide the basic widgets, show how to integrate an external module and
how to run external tools. Also areasonable documentation of both, the functionality and the code should be
part of it.

Once this is done solidly, it should be relatively easy for someone else to continue the project by just
using the concepts demonstrated in the first stage. Other modules can be integrated just in the same manner
and if there is the need, widgets can be extended.

Stage 1 consists of the following tasks:

¢ Display the behavior-hierarchy and browse it

e Edit source code

e Show how to display and edit properties of behaviors (channels, variables, ports)

e Show how to run external tools (like compilation and simulation)

e Show how to integrate external modules like the profiler

o Create different widgets for displaying data (e.g. profiling results and make them easily usable)

Then in a second step, the following issues should be done;

Allocation

Map behaviors

Run architecture refinement tool

Schedule behaviors

Allocate busses

Map busses

Masterthesis of David Berner 14

Run communi cation refinement tool

Run estimator

Display estimation results

Add and remove behaviors

Add and remove properties (channels, variables, ports)

Make project-integration

It is obvious, that list is not complete. But it is enough to get an idea of what RESpecCT could look like
in the future.

Masterthesis of David Berner 15

5 Choosing the Tools

Once the project is specified, we are to choose the tools which fit best for the anticipated task.

Since the SIR-library was written in C++ and C++ is an object-oriented language which is widely used,
writing the GUI in C++ seemed to be the natural choice. Java would have been an aternative, but it would
have added alot of additional work and no real benefit except the native cross-platform-support. Asthere are
a considerable number of usable graphical toolkits for C++, even for cross-platform development, we quit
Java.

5.1 Different GUI Toolkits

The term toolkit in this document means a library for the development of graphical user interfaces (GUI).
Since ANSI C does not include any windows-library by itself, it is essential to use a toolkit for the
development of awindowed application with C or C++.

As mentioned there are quite afew graphical toolkits available for C++. We will give a quick overview of
the most important ones. The Criteria under which we looked at the toolkits were (sorted by importance):

o Portability They must at |east be available under Unix and Windows.

Completeness

Usability

Documentation

Number of users

Look and fedl

e Price

Toolkits which get clearly disqualified by one ore more of the criteria are not listed unless we consider them
generally important.

e Microsoft Foundation Classes (MFC)
MFC are the leader in the Windows-world. They are very complete, quite convenient to use, good
documented and there are alot’s of people using it.

MFC is commercial, and ships with the Microsoft Visual C++. Although this already costs money, it
only providesMicrosoft Windows support. A Unix-version of thelibrary hasto be purchased separately
and is very expensive.

e Gnome
Free, native support for X11
No support for windows

e QT
Very good and complete. Free (GPL) version for Unix, commercia version for MS Windows. Very
good documentation, professional support. Graphical widget-designer available.

The MS-windows version is quite expensive.

Masterthesis of David Berner 16

o wxWindows (gtk+)
based on gtk+. Very nice and complete. Free (GPL). Good support for both, Unix and MS Windows.
Graphical widget-designer available for $50.

Documentation not complete. Widget-designer instable.

e VDK (gtk+)
Good widget-set based on gtk+. Nice, not too stable widget-designer. Available only for Unix.

o tcl/tk
A wide range of widgets available. Widely used.

Not object-oriented, widgets look not very beautiful (old fashioned), no C++.
— [incrTcl]
Object-oriented Wrapper for Tcl.
— tkinter
Python -Wrapper for Tcl. Object-oriented, good documented. No C++

o gtk +
Nice and complete widget-set. Only C, no C++.

e Visual Component Library (Borland VCL)
No Unix-support

5.2 QT versuswxWindows

After examining alot of toolkits, installing and trying some, surfing the web for information, reading related
newsgroups and discussions, we came to the decision, that there are in fact only two toolkits to choose from:
wxWindows and QT. Table 1 shows a close-up comparison between these two:

Criteria QT wxWindows

Portability ++(MS Windows, Unix, Linux) | ++ (MS Windows, Unix, Linux, Macintosh)
Price - ($2925) ++ (free, designer for $50)

Documentation | ++ examples, tutorial +

Completeness ++ +

Usability + +

Number of users | ++ 0

Look and feel ++ +

Table 1; Comparison of QT and wxWindows

Even though wxWindows and QT seem both to be a good choice, the table shows that QT leads the
comparison in almost all categories. We came to the conclusion, that even though QT has a considerable
price, it is probably cheaper to develop in QT than in wxWindows. Also the professional support and alarge
user-community, gave us confidence to choose QT.

10

Masterthesis of David Berner 17

53 PyQt

Having selecting QT as the toolkit of our choice, we realized that there is also Python bindings for QT.
Having known Python already as a very powerful language for devel oping scientific applications, we decided
this needed further investigation. PyQt revealed itself as afree python wrapper for the QT-library.

5.3.1 Advantages

e Price
A C++ QT License for both Unix and MS Windows from Trolltech is today $2925. This includes one
year support and free upgrades. Every additional year of support and upgradesis $910.
PyQt is free for Unix as well as for MS Windows. Although it looks there may be charges for the
Windows-version in the future, these will be insignificant in comparison to the C++ license.

e Speed of Development

Anyone who has ever developed a program of considerable complexity in Python may have been
amazed how fast the project was advancing. In comparison to C++ (or to any programming-languages
we know) the syntax of Python is much clearer. Indentation is a syntax element, so the source codeis
alot easier to read - thisis especialy helpful if one tries to understand what one has done a couple of
weeks ago.

This in conjunction with the fact that major changes in the program structure - which unfortunately
occur especialy in the beginning of application development - makes Python a very handy Rapid Ap-
plication Development (RAD) -Tool. As the syntax - though a lot simpler - is very near to C++, one
has always the option to rewrite the project in C++ once it reaches a more mature level.

e Scripting-Interfacefor the SIR-Library
Developing RESpecCT in PyQt seems to be very promising. There is an apparent additional effort
though: SIR is currently only available in C++, so we would have to develop SIR for Python. Since
afast and easy scripting interface to SIR is very desirable anyway, we would kill two birds with one
stone. The additional amount of work at the beginning would give us a scripting interface amost for
free. Even if we would later decide to switch to C++ development we will still have the scripting
interface.

5.3.2 A small example

In order to get a better impression how powerful QT is in combination with Python, we show a small
example-script:

import sys, gt # load modules

a = gt.QApplication(sys.argv) # instantiate QApplication
w = gt.QWidget() # instantiate QWidget

w. resize (200,120) # resize QWidget

quit = gt.QPushButton(” Pushme’,w) # instantiate button

quit .move(62,40) # movethe button

connect the signal " clicked” of the button with the method” quit” of the widget
w.connect(quit, gt.SIGNAL("clicked()”),a, gt . SLOT(" quit()"))
a.setMainWidget(w) # w is mainwidget of the application
w.show() # show w modal
a.exec_loop() # start the application

Masterthesis of David Berner 18

—

Figure 4: The small example-application.

This script pops up alittle window with a button (Figure 4). If the user clicks on the button the application
exits. Although thisis a quite minimal example, it shows how easy and intuitive the code can be read. For an
advanced PyQt-programmer, the code is as readabl e as the comments in this example.

Masterthesis of David Berner 19

6 SIR Wrapper
6.1 WhatisSIR

SIR stands for SpecC Internal Representation. It is the common data-structure used to store all language-
constructs written in SpecC. The idea is that all tools use this data-structure, so they can easily exchange
information between each other.

A clear and consistent data-structure also makes it easier to the tools to perform the individual refinement
steps. Since a great advantage of SpecC is the consistency in al levels of the design process as well as the
ability to simulate at every stage, the underlying data-structureis of great importance.

SIR is the data-structure which has been developed by Rainer Domer at the CECS, and it fulfills the
requirementswell. Sincethere are alot of functions and methodsin SIR which are not needed to be accessed
externally or which should never be used if not internally, SIR is divided into two levels.

SR Level 1 contains all classes, methods functions and variables which are strictly for internal use (see
Figure5). SR Level 2 consists of all classes and functions which should be used by tools. Level 2 allowsto
perform actions at a much higher abstraction-level (see Figure 6).

6.1.1 Example: SIR_Behavior

Asit may seem obvious, there are classes strictly dedicated to Level 1, like e.g. SIR_Member. Someone who
wants to write atool using the SIR does not even have to know about this class. Most of the classes however
have alevel 1 part aswell asalLevel 2 part. There are no such classes without a Level 1 interface.

SIR_Behavior is an example for such aclass. It's definition islisted in Appendix C.1, it's interface-fileis
listed in Appendix C.2. Aswe can see, the two files are quite similar, however there are differences. How
and why these changes were performed is explained in Section 6.4

6.2 SWIG

As RESpecCT covers the whole refinement-processit seems to be a very thorough test-application for such
a data-structure. Remains the problem, that the SIR currently only exists as a C++-library. The decision was
made - on the other hand - to develop RESpecCT in Python.

Further research on this problem reveals, that there are three possible solutions:

1. Rewrite SIR in Python.
This approach would be very time consuming though very easy to integrate into the application after-
wards. Although it would be possible to implement just the subset of the SIR currently needed in the
GUI, we do not go for this solution because you would have to maintain both versions of SIR and make
sure they really produce the same SpecC-Code.

2. Wrap all the classes methods and functions of SIR in Python-classes, -methods and -functions.
Doing this has the advantage, that there is only one SIR, so if some internals change the wrapper does
not have to be updated (unless the API is not affected). But till, this would involve a lot of work,
probably more than rewriting it completely and it would be difficult to build a clean and consistent
interface like that.

Masterthesis of David Berner

20

SIR _Design

| SIR _FilelList

L_sIR_Filelnfo

| SIR _ImportList

|_SIR_Im port

| SIR_Types

L_siR_Type
|_SIR_TypePtrs

L_SIR_TypePrtr
SIR_Symbols

| SIR_Symbol
| SIR_Notes
S IR _Initializer
S IR _Initials
|_SIR_InitiaIizer
SIR_Constant
| SIR_Parameters
|_SIR_Param eter
| SIR_Symbols...
| SIR _Labels
L sirR_Label
L_SIR_Nates
| SIR_Statement
| SIR_Symb
L _SIR_sSym\bolptr

IP trs

L SIR_PortMap
L_sIR_Portm

L_sir_Bits

L sIrR_Bidslice

L SIR_UserTypes
|_SIR_U serType
SIR_Members
|_SIR_M ember
SIR_Symbols

L.

SIR _Notes

L.

L SIR_Notes

L_sIR_Note

|_SIR_Constant

SIR _Statement

| SIR_Expression

SIR _Expression
SIR _Expressions
|_SIR_E><pression
SIR _Constant

| SIR_Constant

SIR _Statement

L.

|l SIR_Symbols
| SIR _Statements
|_SIR_Statem ent

L

| SIR_SymbolPtrs

| SIR_Exceptions

|_SIR_Exception
SIR_SymbolPtrs

L

SIR _Statement
| SIR _Transitions
|_SIR_Transition
|_SIR_Expression
L SIR_Constraints
|_SIR_Constraint
|_SIR_Constant

Figure5: SIR Level 1[3]

Masterthesis of David Berner

21

SIR _Design
_SIR_Behaviors

| SIR_Behavior
| SIR_Ports

|l sIR_Port
| SIR_PortVars
|_SIR_P0rtVar
SIR _Im plifs
L sirR _Implif
_SIR_BhvrInsts
| SIR_Bhvrinst
_SIR_ChnIInsts
| SIR_Chnlinst
SIR _Variables

L.

Il SIR_Functions

|_SIR_ChanneI
_SIR_Interfac
| SIR _Interfa

|l SIR_Functi

L ...

SIR _Variables
| SIR_Vvariable

SIR _Functions

| SIR_Function
SIR_Arguments
|_SIR_Argum ent
SIR _ArgVars
|_SIR_ArgVar
SIR _Variables

L.

Figure6: SIR Level 2[3]

SIR_Channel
| SIR_Ports
|l sIR_Port
| SIR_PortVars
| sSIR_Portvar
| SIR _Im pllfs
L sirR _Implif
_SIR_BhvrInsts
| SIR_Bhvrinst
| SIR_Chnlinsts
| SIR_Chnlinst
| SIR _Variables

L.

SIR _Functions

L ...

Masterthesis of David Berner 22

3. Useatool like SWIG to automate the generation of the wrapper as much as possible.
Since this is the approach with the least programming effort involved, it is the most flexible one and
the easiest to maintain. Though the interface-generator cannot reflect the library perfectly, it should be
possible to do special adjustments by hand.

Therefore SWIG wasthe choice. It isaquite advanced tool and there are over 400 pages of documentation
on the web. The general workflow is the following:

1. Write aninterface-file
2. Run SWIG onthe interface-file and generate a C wrapper-file and a python shadow-wrapper
3. Compilethe wrapper-file to an object-file (e.g. with gcc)

4. Link the generated object-file against the SIR-library into a shared library

6.3 Creating SWIG-Interface-files

Creating the interface-files is the first and most important task using SWIG. The common procedure is to
make a copy of the header-file of the class one wants to wrap and perform certain modificationson it. In this
header-file one has to specify the name of the module e.g.:

% module definition

and the names files one wants to include (since SWIG does not follow normal ”#include’-statements)
plus the name of the original header-file:

%f
#include ” Global .h”

#include ” IntRep/ Symbol.h”
#include " IntRep/ Definition .h”
%}

Now we have created a correct module-file. If we save it as "modulename.i”, we can run SWIG on it.
Usually, however, one does not stop here. Since we don’t want SIR Level 1 - methods to be used, there is
no point in making them available in Python through the wrapper. The next step will be to remove al Level
1-methods. In order to put everything together, after we have created all interface-files, we create another one
called sir.i which includes other interface-files. Like this, there will be only one Python-modul e produced,
containing thewhole Level 2 SIR.

6.4 Modificationsand problems

Thisisthe theory. Thisis how one wishes it to be - and perhaps in a couple of years we come to that point.
Reslity, however is different. We knew there were still some constructs in C++ SWIG can not handle. Some
are likely to be solved in the near future, some are of a more general nature. Templates are one mechanism
SWIG can not handle. Especially template-classes. With this we had to deal somehow, since most of the
classesin SWIG areinherited either from SIR_List or SIR_Listltem which both are template-classes.

10

12

14

16

18

Masterthesis of David Berner 23

6.4.1 Templates

This issue - though annoying - revealed itself solvable since we don't create new types of SIR_List and
SIR_Listltem. The only thing we would have to do, is to remove the inheritance-statement in the affected
classes and insert method-prototypes which otherwise would be extracted from the template-class. For
SIR_Behaviors the declaration in the header-file looks like this:

class SIR_Behaviors : /x behavior classes list «/
public SIR_List<SIR_Behavior> /«is inherited from SIR_List (Template—class) */

{
public:
(..)

In the interface-file the inheritance is removed and replaced with method-prototypes:
class SIR_Behaviors /% behavior classes list */
{
public:
bool Empty(void); I+ test for empty list ?x/
unsigned int NumElements(void); [+ number of list elements x/
SIR_Behavior * First (void); /% first element (NULL if empty) */
SIR_Behavior xLast(void); /% last element (NULL if empty) */
SIR_Behavior xPrevious(void); /% previous element (NULL if none) %/
SIR_Behavior «Curr(void); [+ current element (NULL if none) «/
SIR_Behavior «Next(void); I+ next element (NULL if none) x/

SIR_Behavior «Prepend(SIR_Behavior xElem);

SIR_Behavior xAppend(SIR_Behavior xElem);

SIR_Behavior x InsertBefore (SIR_Behavior «Elem,SIR\ _Behavior xSucc);
SIR_Behavior x InsertAfter (SIR_Behavior «Elem,SIR\ _Behavior xPred);
SIR_Behavior *Remove(SIR_Behavior xElem);

SIR_Behaviors xConcat(SIR_Behaviors «Appendix);

SIR_Behaviors x Precat (SIR_Behaviors xPrependix);

(..)

The template will now not be visible any more from Python, but since the Python-module will be linked
against the SIR-library, the template is called implicitly because in the C++-compiler does exactly the same
as we did manually.

This issue successfully solved, there still remains a lot work to be done in modifying all those interface-
files. Since the procedure is very straightforward, we decided to automate this process. We wrote then a
Python-script which takes a header-file, inserts the "module€”’ and "import” -statements, examines it for the
template-classes and inserts the method-prototypes of the appropriate types. This effort turned out to be
very worthwhile since a change in the header files just requires a regeneration of the interface-filesin order
to be correctly reflected in the python-wrapper. A very simple change in the header of the template-classes
could otherwise require some hours of editing the interface-files. The Python-script for the automatic
interface-generation in included in the appendix (Appendix C.3)

Masterthesis of David Berner 24

6.4.2 Typedefs

Another problem are typedefs. SWIG does understand typedefs, but is does not reflect them entirely. In
the SIR-library there are often typedefs used like "typedef class SIR_Behavior sir_behavior”. Then there
are methods returning values like: "sir_behavior * Copy(const char *Name, BOOL Strip=False);”. Python
will not create a wrapped object around the returned pointer and will throw a TypeError or AttributeError
using it. This can be solved, by changing the method-prototypeto ” SIR _Behavior * Copy(const char *Name,
BOOL Strip=False);”. In this case, Python will recognize the returned value as a pointer to a SIR_Behavior
and wrap it correctly. Now thisis fixed very fast, but there are alot of methods where this problem occurs, so
againitisalot of work changing it manually. So far we could not automate it though, sinceit is not atrivial
adaption. The class "SIR_PortMap” e.g. has a capital letter inside, so there is no simple rule to perform
the transformation from " sir_portmap”. Perhaps we will consider to make these changes directly in the SIR
header-files, since the changes would not break any other code.

6.4.3 Pointer to Pointer

After considering al of this, one can use the Python-wrapper and it workswell. Only while using it, one will
encounter further issues which require some attention. In C and C++ a method or function only can return
one value. If one wants to return several one can think of introducing an intermediate STRUCT holding all
of the return-values and return it. This can sometimes make sense, but can also produce confusing code. The
other possibility isto return supplementary values through arguments. The arguments have to be pointer to a
pointer. The called method assigns them avalue and like thisthe caller can use the value by dereferencing his
argument. This has the advantage to produce code which looks simpler, but depending on the situation it can
also be more difficult to read since the information-flow is not obvious any more. In SIR the latter method is
used deliberately. Python has no pointers, only references. The conversion between references and pointers
is doneimplicitly. Therefore, creating a pointer to a pointer is not possible. This makes it impossible to call
such methods directly from within Python.

The solution is to add methods to the C++-interface-files which take no pointers to pointers as arguments.
These methods call the corresponding methods and return whatever value one wants. It is obvious, that this
can not be done easily in an automated way - and this means work. Also it has to be adapted every time the
interface changes. In addition, since there is only one return-value, sometimes there have to be added several
functionsin order to wrap one method with more than one argument. This is the approach we took so far. It
has the huge disadvantage, that we lose consistency between the two languages. Before, the documentation
for the SIR-library had perfectly covered the Python-wrapper. Since we have introduced supplementary
functions, thisis no longer the case. The changes have to be documented separately.

6.4.4 Function Overloading

Function and method-overloading is a very common and convenient concept in C++. However there is no
correspondent for this concept in python. SWIG handles this problem by ignoring al multiple declared
functions and methods except the first one encountered. Thisis avery simple way and apparently it provoke
missing functionality. One way in making methods available to python is to add methods with a different
name in the C wrapper-code which call the overloaded functions/methods. Thisis very simple to perform
(could be even done automatically) but resultsin inconsistencies with the C++-interface.

A way to avoid this is to add methods to the python-wrapper, which check the types (and number) of
the arguments and call the (previously renamed) appropriate C++-methods. This is a bit more work, but

Masterthesis of David Berner 25

afterwards the interface stays the same. The Python method can be called like the overloaded C++-method.

In the current status we made only those methods available which are actually used. Only when it was
really necessary we implemented C++-accessor methods. The approach with Python type-checking and the
wrapper-method mentioned aboveis desirable to be used in a more advanced state of the Application.

6.4.5 Other Issues

Besides the problems discussed above, there still remain a couple issues. Some advanced C++-features like
friend classes, nested classes, operator overloading and namespaces, SWIG is currently unable to trandate.
We did not have to worry about these since they are not exposed in the SIR-Interface.

Anissue we actually have sometimes to deal with are exotic data-typeslike ”long long” or "long double” and
advanced typedefs like " typedef ERROR (* sir_bhvr fct)(sir_behavior*, void*);”. For problemslike these we
have to decide individually how to handle them.

6.5 Compilation
6.5.1 Unix
The compilation under Unix follows three basic steps:

1. Generate C-Wrapper with SWIG
swig —c++ —shadow —python $(MODULE).i

Thisruns SWIG on the interfacefile. The option "c++” tells SWIG that is has to deal with C++ code,
otherwise it assumes there is C code. ”-python means that we want to generate a python module.
"-shadow” means that SWIG should generate python shadow classes which correspond to the C++-
classes. If thisoption is omitted, the python interfaceis"fl at”, without hierarchy. In this case wewould
have several hundred static functions which operate the underlying C++-objects. To have shadow-
classesis very convenient, since the library can be used in the same manner as it would be used from
C++,

2. Compilethe Wrapper
c++ —fpic —fpermissive —c $(MODULE)_wrap.c $(INCLUDE_PATH)

When compiling the wrapper into an object we have to make sure, that all original SIR header files are
in theinclude path. The option ”-fpic” is needed since we want to create a shared library. It makes the
compiler produce position-independent code. The option ”-fpermissive’ is needed with newer versions
of gcc since SWIG generates apparently not 100% ANSII-C conform code. This option causes the
compiler to be less restrictive and throw warningsinstead of errorsfor certain constructs.

3. Link it into a Shared Library
c++ —shared —fpic $(MODULE)_wrap.o $(LIBS) —o $(MODULE)cmodule.so

Linking into a shared library can be painful, but with the right compiler-version (we use gcc.2.95.2)
and the right options it usually works. The flag "-shared” signals the compiler to produce a shared
library. We have to include our just created object, the compiled SIR-library (position independent)
and the python library.

10

12

14

16

18

20

22

24

Masterthesis of David Berner 26

6.5.2 Windows

In the windows-environment, shared libraries are called DLL’s. Generating these is comparatively more
complicated. It gets even more complicated because of the fact, that C++-SIR does currently not compile
with Visual C++. Therefore we use gcc under cygwin. It makes no sense to explain the build-process in
detail here, here alisting of the commandsto get an impression of how it works:

swig —c++ —shadow —python sir. i

compile the library
c++ —fpermissive —c sir-wrap.c $(INCLUDE_PATH)

generate the dil ;
gcc —s —WI,——base—file,sir.base python20.dll sir_wrap.o $(SIROBJS) \
—Istdc++ —mdll —o sirc. dil —WI,—e,_sirc_init__FPvUITO@12

generate the . def—file

dlitool ——base—file sir .base ——output—def sir.def ——export—all—symbols ——dllname sirc.dll sir_wrap.o

generate the . exp—file
diltool ——base—file sir .base ——def sir.def ——output—exp sir.exp ——dllnamesirc.dll

regenerate the dil :
gcc —s —WI,——base—file,sir.base sir .exp python20.dll sir-wrap.o $(SIROBJS) \
—lIstdc++ —mdll —o sirc. dIl —WI,—e,_sirc_init_FPvUITO@12

repeat . exp—file—generation:
diltool ——base—file sir .base ——def sir.def ——output—exp sir.exp ——dllnamesirc.dll

final dIl —generation:
gcc —s sir .exp python20.dll sir-wrap .o $(SIROBJS) \
—lstdc++ —mdll —o sirc. dll —WI,—e,_sirc_init__FPvUITO@12

6.6 Summary

If we consider the amount of work and maintenance it would take to rewrite SIR in Python or to manually
wrap it, SWIG is avery convenient and helpful tool. But thereis no magic involved, so there are still quite a
lot of stepsto go through until one obtains a conveniently usable wrapper.

Once this is done we have SIR completely accessible through python with almost the same API than
the C++-version — which is not only useful for RESpecCT but also represents a light, fast and platform-
independent scripting-interface which can be used to implement small tools using SIR quickly.

If at some point it may seem desirable to have a perl or a Tcl/Tk -interface to SIR, SWIG can generate
those from the same interface-files with only slight changes.

Masterthesis of David Berner 27

7 Implementation

This chapter will describe shortly the implementation of each element in the application. |s covers design
decisions made and wants to give some background on user-interface design [4]. It is a quick overview of
how RESpecCT is built and what structure is behind.

We will discuss some general concepts as well as specific classes and where they are derived from. In
order to understand this fully one needs some knowledge of the QT-library which isintensely used. The QT-
classes are not further described, please refer to the official QT-Documentation ([5] or [6]). All QT-Classes
start with a capital " Q" followed by a descriptive name like ” QWidget” .

RESpecCT M=l E3
Eile Edit Display Project Profiler Architecture Communication Tools WWindows Helpl
E=Ea 4 O e+ T ND R AN
Marme !, % autocorr.sc w|a] %
= hAain behavior Autocorr | A
¥ ¥ design inWord1e x[L_FRAME], /(i) Input signal
&b in WWord16 wind[L_WWIMNDOW], / (i): window for LPC anal
out Word16 r_h[MP1], /(o) Autocarrelations (msh)
W hzbs out Word16 r_I[MP1], /* (0} Autocorrelations (Ish)
m-Fhe inout WWord1E norm /* {0} scaling factor for the auto
J T <]
id
U?l 4 variables |channe|s | ports |
Int
Yo MName |type | acld

Wo g in short int [22]
Fla 1155 out short int [10] Eloe |

WOoRE 14 Isp in short int [10]

— & monitor oy
& stimulus

for |

Figure 7: The RESpecCT Main Window

7.1 First Steps

Once we have a Python-version of SIR we can actualy start implementing the actual application. So what
do we need? And in which order?

Thefirst element used isaMain-Window with atoolbar, amenu and a statusbar. Then we haveto integrate

Masterthesis of David Berner 28

some tree-view to display the behavior-hierarchy. Once we got that tree-view, we can start using the SIR-
module and continue expanding.

7.2 TheMain Window

Figure 7 showsthe RESpecCT main-window. It isbased on a QMainWindow with amenubar, a statusbar and
several detachable toolbars. All of those components can be hidden in order to maximize the workspace. To
organi ze the workspace we put a horizontal QSplitter in the middle. It separates the workspace into two parts
at a predefined position, this position can be moved by the user by simply draggingit to the left or to theright.
Theleft side will be reserved for the behavior-tree, in the right side we put a QWorkspace. The QWorkspace
can be used as an MDI Workspace which means that one can open arandom number of child-windowsinside
the workspace. They can deliberately moved within the workspace, but always stay inside. The user can
resize them, tile them (resize all windows so they fit together in the Workspace) and cascade them (resize all
windows to the same size and put them one behind the other).

7.2.1 Behavior Tree

The behavior-tree class is called SC_tree. It inherits from QListView. It adds methods for filling itself
from an SIR-Design, column management, behavior-mapping and some more. When filling itself from a
SIR_Design it just creates the toplevel-item, the rest of the design is read recursively from within the items.

The class for the list-items is called SC_item. Obvioudly it is inherited from QListViewltem. It's
constructor takes a SIR_Instance and creates his immediate children. Each item checks his own type and
automatically uses the according icon. There are different icons for behaviors of type serial, parallel, leaf,
FSM and other. Each SC_item keeps a reference to his SIR_Instance and SIR_Behavior. In addition to that
thereis adictionary in SC_tree which holds key-value-pairs of the type " SC_item:SIR_Behavior”. This may
seem redundant information but is due to the current characteristics of PyQt. Every QT-Object is actually a
C++ object. Every time the QT-code returns an instance to python, it is automatically wrapped into a Python
wrapper-object. Aslong aswe don’t subclass the QT-object there is no problem, but if it is sub-classed, there
is. Python’s memory management automatically garbage-collectsany object whichisno longer referencedin
the code. In the case of the tree, only the QListview would hold a pointer to its items, whichisin C++. The
python wrapper object would be deleted as soon as it gets out of scope in the Python-code. Any operation
on the SC_tree which returns an item would then return a QListViewltem which is no longer wrapped in an
SC._item, the Python wrapper-object, since that has been deleted.

To prevent this, we have to keep a reference to the python object (SC_item) in the application. Then the
python-object is not deleted since its reference count is still positive. The SC_tree-operationswill now return
items of the sub-classed type since the wrapper-object persists.

Often it is convenient to keep references to al objects somewhere, but if one forgets it, there can occur
very strange errors. After discussing thisissue in the PyQt-mailinglist, we agreed that it would be convenient
if PyQt kept references to the sub-classed objects transparently. Thus, in the next release of PyQt (version
2.3) there will be no longer aneed to think of this.

7.2.2 MDI Workspace

MDI means Multi Document Interface. In modern desktop applicationsit is a common concept which allows
the user to open multiple documents or - more generally speaking - child-windows and let him move them

Masterthesis of David Berner 29

| &' B2B3 i Operations of b2b3 w|al x|
Al I AGElS | B l Total Opm: 234042
Mame E
L , | — [] anthmetic
At out shortint [22] . o
A2 out shortint [22] | L] Megmm
At out shortint [22] . . &
Ag_tZ out short int [22]

S design.sc

hehavior B2B3(in ‘Word15 w1[L_FRAKE],
out Word1g A_t[MP1 = 2],
out Word1g A_tZ[kP1 * 2],
out Word1s Ag_t[MP1 * 2],
out Word1B Ag tZ[MP1 * 2],
out Word16 ana[PRhk_SIZE]

i
R — 1 Bar Chart EEE
i Bar Chart . . . :
: : Operations in selected behaviors
Storage in selected hehaviors
e o [Arithmetic
lLogic
11 158+ [Memory
20 SRR [SR E—— (FzEricE ReERESERSEETEE———— _[otner
gy e e e SR
L R e
408+4 4 ----eeoo---- SR oo
50+ ----BEEE- oo B
0 o
he b3

autocaorr az_lsp int_lpci T

Figure 8: MDI Workspace

around deliberately while still keeping them in the main application-window. Thisis designed in order to let
the user freedom in configuring and adapting the user-interface to his needs and habits, while preventing to
let the GUI interfere too much with other applications.

The MDI-workspace of RESpecCT is shown in Figure 8. In the RESpecCT MDI-workspace one can
do code editing, compare different profiling-charts, view and edit properties of behaviors and perform other
refinement-steps at the same time. The danger with MDI is that one loses track of al open windows and that
windows get hidden behind others. On the other if the user usesit wisely it can be a powerful tool. We think
that the advantagein productivity is so big that it isworth taking the risk of losing track of the open windows.

7.3 CodeEditor

RESpecCT - Refinement and Exploration tool for the SpecC Technology - is not an IDE. The name should
make this clear. There are, on the other hand, several reasons which make a code-editor essential:

Masterthesis of David Berner

30

#include "cnst.sh”
#include "typedefsh”

import "pre_process”;
import "lp_analysis1";
import "Ip_analysisz";

NG ksl in YYord16 v1[L_FRAME],
out Word16 A_t[MP1 * 2],
out Word16 A_t2[MP1 * 2],
out Word1B Ag_t[hP1 * 2],
out Word1E Aq_tZ[MP1 * 2],
out Word1E ana[PRM_SIZE])

ChtiP Cz, C3;

LP_Analysis1 bz(wi1, CZ, C3, A_t, A_tZ);
LP_Analysisz b3(w1, CZ, C3, Ag_t, Ag_tZ, ana);

void main{void) {
par |
h2.main();
h3.main();
¥
b
B

hehavior Design(
in bitl3 AMPLE_\WIDTH-1:0] input[L_FRAME],
out Ward16 A tIMP1 * 21

s

Figure 9: Code Editor.

using the user-interface.

e.g. haveto be treated very individually.

understand how the code evolves.

For all these reasonsit was important to include a code editor from the start.

During refinement it is often necessary to edit the code and make small modifications.

A more advanced SpecC-user will be faster to make certain changes directly in the code than rather
Not all modifications of the source code can be performed through the user interface. FSM-behaviors

For educative purposes or for testing it can be instructive to take a look at the source code in order to

The editor integrated right now (Figure 9) is very basic. It is a QMultilineEdit-widget with some small
enhancements for loading, saving and cut & paste. For a later version it is desirable to have features like
syntax highlighting, unlimited undo and redo and transparent co-editing with the user-interface. This will
however consume a considerable amount of work and a lots of issues concerning this are not clear yet. Thus
we decided to go for asimple editor for the start and enhance it as soon as the rest of the application is more

complete.

Masterthesis of David Berner 31

£ BZB3 EEE3
variahles | channels | I
Mame |type | acld

At out short int [2Z]

Atz outshortint [22] EESEINDAC N
Agt out short int [2Z]
[
[

Ag_t? out shartint [27]
ana out short int [57]
W in short int [160]

Figure 10: Properties Dialog.

7.4 Properties Dialog

The behavior-tree is very good to visualize the hierarchy, to get a quick impression of the topology of the
design and to check the type of the behaviors. It is not appropriate though as a display for the contents of the
behaviors.

To display variables, channels and ports we designed the editpr-widget (Figure 10). It has a QTabWid-
get with tree tabs named variables, channels and ports. Each tab looks exactly the same. They contain a
QListView with two columns, "Name” and " Type’. on the right hand side there are two QPushbuttons,
"Add” and”Remove”. The properties-dialogis accessible either through the popupmenu of the behavior-tree
or through an icon in the application-toolbar. The dialog scales nicely on resizing and can be minimized or
maximized with the usual buttons in the upper right corner. The design of this dialog has been made using
QT-Designer. The generated classis called "editpr”. The inherited classis called "bhEditProp”. It provides
the editor with the required functionality. It takes an SIR_Instance as parameter, and fills his QListViews with
the properties of this behavior. The title-bar of the dialog will display the name of the behavior. The buttons
add and remove are meant to let the user add and remove properties. The remove button currently shows the
user dependencies and leads him to the appropriateline in the SpecC-codein order that he can decide himself
what to do. The add-methods are currently not implemented. They should start awizard which |eads the user
through the process of adding a new property.

75 Profiler

The general task of the profiling is to compute all kinds of informations about the design. These informations
should help the user to make design decisions like allocation and partitioning. The profiling-tool itself is a
command-line-tool currently developed by Lucai Cai. It takes a pointer to a SIR_Design. This design will
be annotated with someinformation. In oder to interact with the user-interface and to integrate the tool more
closely, we decided to specify an API for the profiling-tool and to compile it into a shared library. like this

Masterthesis of David Berner 32

Mame Operations| kMemaory| Traffic | 1
-4 hiain 314714 3516 O z
& I design 312776 1290 2080 2
&1 18728 15 ze4n 2

I bzbh3 284042 1115 B z

- bz 121298 436 16 z

—&F autocarr B5400 745 z 4

¥ az |sp l43z08 a0 10 4

— ¥ int_Ipci 787 12 1 g

—&Fint_|pc? 287 12 1 8

—&F lag_window 388 it 0 4

— & levinson 7538 57 25 4

— & update 143 1 20 4

e b3 2894042z 629 10 z

— ¥ monitor 0 0 0 0

— ¥ stimulus 1975 1 z080 7

Figure 11: Columns with Profiling Information

we could wrap it into a python module and use it interactively.

7.5.1 Columns

In order to evaluate profiling-results, the user wants to have a display which alows him to view as much
information as possible as fast as possible. Thus it seems very convenient to put the profiling results
as additional columns in the behavior-tree (Figure 11). Like this the user can choose the portion of the
behavior-tree which is most important to him by opening and closing branches and has the corresponding
dataright besidesit.

After profiling we display some columns which we consider as the most interesting ones. Depending on
the design characteristics there may be special data which is of great importance to the designer. Therefore
heis able to choose the columns which he wants to display from abig variety.

The columns displayed by default are Operations, Traffic and Memory Consumption. There can be chosen
columns for al different kinds of operations (like addition). For every operation there can be columns for
every data-type (e.g. integer 16 bit). Memory consumption and traffic can also be examined for every data-
type. Since there is 29 different data-types and 56 different operations in SpecC, there will be about 2000
different possible columns to choose from. In addition there are some higher level metrics computed from
others.

Masterthesis of David Berner 33

1 Operations of b2b3

b2b3

Total Operations: 294042

Arithmetic
Logic

remory

.

Other

Figure 12: Pie-chart Widget.

7.5.2 PieChart

A disadvantage of the profiling-information in the columns is, that you only see numbers. Though most
peopletoday are quite habilein comparing numbers, it is much moreintuitive to compare information with a
more graphical representation. Therefore we decided to implement charts.

A pie-chart is a easily readable chart. Our Pie-widget (Figure 12) can take an arbitrary number of
key-value pairs and displays them as different colored slices in the pie. It has alegend which can be aligned
left, right or hidden. The overall sum is displayed in the subtitle, the amount of every single sice can be
displayed in the slice itself (either as absolute value, or as percentage).

The pie-chart-widget is used to display one criteriafor one behavior (e.g. different kinds of operationsfor
behavior "b2b3").

Masterthesis of David Berner 34

I Bar Chart [FT=lx]

Cperations in selected behaviors

BB qp oot tesote s s e osesasteaas e sasssassessnesass |:|Arithmelic

ILDglE
T T R e e

hEmory

1.2e+5
G.0e+d

4.0e+d4 —+

b2 3k}

Figure 13: Bar-chart Widget.

7.5.3 Bar Chart

Sometimes it is important to compare different behaviors for the same criteria. We could open several pie
charts and put them side by side, but this is not very satisfying. So we implemented the barchart-widget
(Figure 13). The barchart can display one criteria for several behaviors. It scales automatically to whatever
data it contains, the caption of the scale changes depending of the numbersto scientific or fixed display. If
there is negative data, the O-lineis moved to wherever it fit's best.

Using the " shift” or " ctrl” — button, the user can select different behaviors form anywherein the behavior-
tree. Once he chooses the criteria to be displayed the bar-chart will be shown in the MDI-workspace. It has
to be mentioned, that depending on the size of the screen it may not be advisable to select more than 10-15
behaviors at once.

7.6 Architecture Refinement Tool

After profiling is done, we can use the information obtained to make architecture refinement decisions. Ar-
chitecture refinement consists basically of allocation, partitioning and scheduling. We had to find ways to
make these decisions quick and easy to take.

7.6.1 Allocation Dialog

Allocation is basically the process of selecting the processors one wants to use in the design out of alist of
processors offered from an | P-database. The display we developed is shown in Figure 14.

The allocation-dialog contains two QListViews. On the l€eft there is the list of available processors, on the
right the list of allocated processors. Between them there are two buttons to add or remove processorsto the
design. On the very right, there are standard-buttons with captions” OK”, " Cancel”, " Rename” and "Help”.

Masterthesis of David Berner 35

Allocate Processors

Add or Remove Processors to Design

Custom HW 100 50 0.5
Strong ARk 150 Z40 E5

Avallable Processors |Clocl<a’ fviHz | bAIPS | Coste’$| Allocated Processor | Namel oK |
Custom HW (Pipelined) 100 100 8§ FHOP PE1

FHOP G0 z0 15 hotorola 56603 PEZ Cancel |
Intel BO51 12 0.5 Z

otorola 56503 50 m 20 e e |
JPEG 10 3 1 -

Help

GlE

Figure 14: Processor Allocation.

The list "available” shows currently just an internally stored list of processors with information like clock,
performance and cost. This information should be taken from an IP-database later on. If you push the add-
button, a dialog will pop up, asking you for a name (Figure 15) - since it is perfectly allowed to alocate
several processors of the same kind, you have to give them aname in order to be able to identify them.

The applicationwill annotate the design with the information showninthe” allocated” -list (key valuespairs of
processor-type and name). This information will be needed from the architecture refinement tool developed
by Junyu Peng.

7.6.2 Behavior Mapping

After processors have been allocated for the design, there will appear an additional column in the behavior-
treecall "PE". Thereis also added a menu-item in the popup-menu of the behavior-tree called "map”. Click-
ing on it will show a sub-menu listing the names of all allocated processors. Choosing one of the processors
will map the currently selected behavior to this processor (Figure 16). At the same time the design will be
annotated with the appropriate information.

Behaviors which get not explicitly mapped will be mapped to the same processor as their parent-behavior.
Once the behavior-mapping is finished, you can run the architecture refinement (select "refine” in the
architecture-menu). Thiswill launch the first step of the architecture refinement. There will be an additional
level of hierarchy introduced representing the processors. Also therewill be additional behaviors responsible
for the synchronization of the communication between the behaviors.

Masterthesis of David Berner 36

Enter Name Ei

Please enter a name for the processor, OK

|PE2 Cancel

Help

Figure 15: Nameenter Dialog.

7.6.3 Scheduling

After that there should follow the second step of the architecture refinement, the scheduling. Scheduling
means to sort all behaviors on one processor in a certain order. Thereis currently no display for the schedul-
ing. It isnot just aone-dimensional problem since it should &l so be possible to schedule over the hierarchies.
After the order of the execution has been selected by the user, the architecture refinement tool has to be run
again in order to perform the changesin the SIR-datastructure.

7.7 Communication Refinement Tool

The communication refinement tool is currently developed by Samar Abdi. It's main task is to map the
top-level-channels to busses and introduce transducers if necessary. Transducers are elements capable of
connecting two components with different protocols.

7.7.1 BusAllocation

Similar to the processor allocation there have to be allocated busses. Since this process is almost the same,
we use the same display. This allows the user getting used to the GUI more quickly. Asyou seein Figure 17,
thereisontheleft alist of available busses which lists a selection of busses with some data: descriptive name,
Number of Address bits, number of data-bits and throughput in Mbit per second.

As with the processor-all ocation dialog, one will be prompted for a name for the bus-instance (Figure 15).

7.7.2 Channel Mapping

After the bus-allocation one can select the item "map channels’in the menu "communication”. This will
open a dialog very similar to the previous (Figure 18). In fact, we used the "allocation”-dialog, and just
applied a couple of modifications. In the list on the right hand side of the dialog figure all the top-level
channels which have to be mapped to a bus before the communication refinement-tool can be run. In the
QListView on theright hand side are listed all allocated busses. After selecting a bus and a channel, you can
add that channel to the bus. It will be listed in atree under the bus.

After all channels are mapped, the list on the right side is empty and the channel-mapping is compl eted.
Now the dialog can be closed and the communication-refinement tool can be run by choosing the item

Masterthesis of David Berner 37

Mame BE
-4 hAain
F- 1 design PE1
Fhi
Hbzb3
it o
— ¥ autocorr
— ¥ az |sp
—Fint_Ipc
— & int_lpc?
—¥ lag_window
—& levinson
& update
e
— & monito map to ™ PEq
— & stimul.edit code PEZ
delete T
properties
chart -

Figure 16: Behavior Mapping.

"Refine” in the menu ” Communication”.

Communication refinement will insert the appropriate busses and protocols into the design. If necessary
there will be transducers inserted. A transducer will appear as an additional component on the top-level of
the design.

7.8 Summary

Overall the implementation so far proves that python in conjunction with QT were a good choice for RE-
SpecCT and enabled rapid application development. RESpecCT is now a basic framework showing all nec-
essary concepts like accessing and modifying the SIR, integrating external tools and modules and provides
basic widgets for data-evaluation and for taking decisions. Thisis what was fixed in the specification of the
project (Section 4).

In addition to that it shows allocation and partitioning and can already be used to perform refinement to the
architecture level on basic designs. Besides the GUI there is still work to be done in the tools. So many of
the functions will only be available in the GUI after they have been implemented in the tools, but integration
and extension is straightforward.

Masterthesis of David Berner 38

Allocate busses

Add or remove busses to design

Available busses | Data hits |Adress hits |Mbitz‘5 | Allocated busses |Name| oK |
Jouble Handshake [§1S 3z 10 Double Handshake BUS1

WD G4 [1500 ;I Cancel |
WAE g 4 30

PCI 16 16 130 < Bename |
[SA, g g 12 _I

Help

Figure 17: Allocation of Busses.

Map channels E

Map top-level channels to busses

Channels |5end | IRecwy Busses ' |ISend||Recy Ol
il pel pez =
Ll Cancel
3 pez pel
LI EBename
Help

Figure 18: Map the Top-level Channelsto Busses.

Masterthesis of David Berner 39

8 Example

Now that it is clear what was implemented and how, we want to show how the program actually works. In
this section we describe the use of the program with the help of a small example-design.

RESpecCT [_[C[x]

Elle Edit Display Project Profler Architecture Communication Tools Windows ﬂe\p|
2HE fBRRoc ++4:up/E2 aNw

Mame [

=@ Main

1 design
e 4l
W bzb3
&3
- autocorr
M az_|sp
A lag_window
M levinson
§ q_plsf_and_intipc
- update
@ monitor
A stimulus
Figure 19: Load an Example Design.

RESpecCT [ZIo1x]
File Ecit Display Project Profler Architecture Communication Tools Windows Hs\pl
EH8 JREBOG ++0: 1B 5280
Mame 1
& @ Main

1 design
ool

1b2b3

1 q_plsf_and_intipc
- update
-4 monitor
A stirnulus

i‘ba edit code
A autoc delete
:‘az—‘S properties
ag_w.
@ levine Shart -

Figure 20: The Context Menu.

8.1 Loading and Examining Design

First we load a design into the project. We can do this by choosing the in the menu "File’ the item
"Open Design” or by just clicking on the open-icon in the toolbar. We choose our example-design called
"testbench.sir”. Instantly the behavior-tree of the design is displayed on the right hand side (Figure 19).

Now the user can browse through the hierarchy, the symbols of the behaviorstell what type they are (serid,
paralel, FSM, leaf or other).

Masterthesis of David Berner

RESpecCT =] B
File Edit Display Project Profler Architecture Communication Tools Windows Hs\p|
2RE8 {BRROC [++0: 1D 5282
Na]
£ LP Analysis1 [~[<]x]
1 design
b1 Ichamne\s | ports |
1b2b3 R —
Name | type add
Fb3 Isp_mid short int [10]
A autocorr Isp_new short int [10] M
M ez_|sp r_h shortint [11]
4 ag_window rl shortint[11]
A levinson e short int [4]
1 q_plsf_and_intipc scal_fac short int
- update
-4 monitor
A stimulus
RESpecCT =] B
File Edit Display Project Profiler Architecture Communication Tools Windows Hs\pl

z8s8 {RROc ++ 0 |||9H5un?\

MName i}
£ LP Analysis1 [~[<]x]

1 design
Fo1 variables

1b2b3 |
P e e il
o3
remove
A autocorr —I

M az_lsp
A lag_winciow
A levinson
1 q_plst_and_intipe
- update
-4 monitor
A stirnulus

Figure 22: Channels of the Behavior.

RESpecCT
Eile Ecit Display Project Profler Architecture Communication Tools Windows Help
Eile Edit Display Pi Profiler Archi Ci Tools Wind Hely
sUHa JBERoc ++8: 1D 52 ar
T
£ LP_Analysisl [~ =1x]
wvariables |chamne\s \ |
1b2b3 R —
Name | type add
A_t out shertint [22]
b3 =
A autocorr A_t2 out short int [22] remave
M ez_lsp Ispt ISend
- 1ag_window Ispz IRecw
A levinson [« in shortint [160]
1 q_plsf_and_intipc
- update
-4 monitor
A stirnulus

Figure 23: Ports of the Behavior.

Masterthesis of David Berner 41

Eile Edit Display Eroject Profler Architecture Communication Tools #indows ﬂe\p|
& f T, (T I p
2HE fBRRoc ++4:up/E2 aNw
Hame: I 1> analysisisc [~=1x]
= Main behavior LP_AnalysisT (|
¥ st in Word 16 <[L_FRAME], ¢ (i} input signal “
P 1Send Isp1,
IRecy Ispe,
bzbs out Word16 A_MP1 * 2], #* (0): A(z) unquantized for the 4 subframes
out Word16 AZZ[MP1 * 2] * (o) A(z) unquantized for the 4 subframe:
=- b3)
& sutorr Word1 Isp_mid(M];, i~ LSPs at 2nd subfi /
Fez_isp ord16 Isp_mid[M], 1~ s at 2nd subframe] i
P Word16 Isp_new[M;
- levinson Word16 rc[4]; /* First 4 reflection coefficients =/
1 q_pisf_and_intipc
- update Word1E scal_fac;
& monitor Word1e r_[MP1]. r_h{MP1]:
A st il
stimulus

B | =

Figure 24: Source-code Editor for the Behavior.

File Ecit Display Project Profler Architecture Communication Tools Windows Hs\pl
T e T
BEHS8 JBRRoc ++81 0D FR2 A0
Name] Ip_analysisi.sc RIENES |
& Main behavior LP_Analysis? [A
i design in Word16 x[L_FRAME], /* (i) input signal 7
i ISend Isp1,
n IRecy _lsn7
bzb3 Cannot delete b2 hquantized for the 4 su
nquantized for the 4 st
Fb3 Because method ‘main’ in behavior BZB3 depends on it
& autocorr Delete this dependency?
Sz isp ubframe -t
¥ lag_window Ves Mo
#levinson fection coeficients
1 q_plst_and_inflpo .
- update Word16 scal_fac;
& monitor Word16 r_I[IMP1], r_h(MP1];
A stirnulus
/= LP analysis centered at Znd subframe */
AutocorT autocort(x, window_160_80, r_h, r_|, scal_fac);
Lag_Window lag_window(r_h, r_I};
Levinson levinson(r_h, r_l, old_A1, A_t, rc};
v/
L 1] L

Figure 25: Evaluating Dependencies while Deleting a Behavior.

A right mouseclick on a behavior displays the context-menu (Figure 20). There the user can choose to
view and edit the contained variables (Figure 21), channels (Figure 22) and ports (Figure 23), view and edit
the source-code (Figure 24) or to delete the selected behavior (Figure 25).

8.2 Profiling

The next step is to run the profiling-tool. This is done by choosing the item " Profile Design” in the menu
"Profiler”. Thistakestypically aminute. After thiswe get three additional columnsin the behavior-tree. They
display overall operations, traffic and storage for the behaviors. If the user wants to visualize the profiling
results, he can choose one or several behaviors by clicking on them with the " Control”-key pressed. In the
contextmenu he then can choose the submenu " Chart”. Now he can e.g. visualize the amounts of different
types of operations (Figure 26). Depending of the nature of the data the user wants to visualize, bar-charts or
apie-charts are displayed.

Masterthesis of David Berner 42

FEile Ecit Display Project Profier Architecture Communication Tools Windows ﬂe\p|
5 T o T . =
2HE fBRRoc ++4:uD/E2 AN
[
Mame | Operations | Traffic | Memor -
w- @ iain 561280 0O 1596
71 design §58709 200 1280
e 4l 22688 a0 15
1 bzb3 535813 520 1118
¥ [H 160630 276 486

autocorr 97564 516 245

=n7an a0 e I Bar Chart [~[-[x]

#int_lpc1 edit code z2 12 Operations in selected behaviors

M int_po2 delete - o

A lag_winc 40 22 [] Avrithmetic
properties ig, in o Logic

update A 17 Operations ety
Y [3751 Trafic d0e+4

-4 autocorr 9755 storage i A

M =z_|sp 5074 oyt

Flag window ey e 10044

& levinson 10689 133 57

! nisf and_intlne 215375 7as 118 i o

I] P autocorr az_lg| levinson

Figure 26: View Profiling Results.

Tl B e Grten GhGEe it Gl e Y e |
2 a
=2
Name Add or Remove Processors to Design
EX]
b | Avallable Processors | Clock ¢ MHz [MIPS | Cost /8 Allocated Processor | Name | ‘ oK
Custorn HW (Pipelined) 100 100 & FHOP Proc1
FHOP 60 20 15 Cancel
Intel 8051 1z 0.5 A
IMotorola 55603 50 1wz Rename
JPEG 0 3 1 El
100 50 05 b= TR
StrongARM 180 240 25 ;| ’—l
Enter Name.
Please enter a name for the processor: | oK I
oz Concel
Help | | | |
= 2 Is levinson

Figure 27: Allocating Processors for the Design.

8.3 Architecture Exploration

The main purpose of the profiling-information is to facilitate the decision-taking for the architecture-
exploration. The first decision to take there is to choose the processors we want to use in the design. This
process is called allocation of components (Figure 27). The next decision consists of mapping parts of the
design to the selected processors. We call this partitioning (Figure 28). If abehavior is not mapped explicitly
to a component, it will be mapped to the processor its parent is mapped to. After the mapping is performed
the architecture refinement tool can be run. Basically the tool adds a new level of hierarchy to the design,
which represents the processors and some additional behaviors, synchronizing the communication between
the processors. The resulting design is shown in Figure 29.

8.4 Communication Refinement

As the communication refinement basically consists of introducing protocolsin order to get the communica-
tion between components cycle-accurate, we first allocate busses and then map the toplevel channelsto these

Masterthesis of David Berner 43

RESpecCT [_[C[x]

Elle Edit Display Project Profler Architecture Communication Tools Windows ﬂe\p|

2HS Y BRBoo|++s:nd |E2 e

Mame |PE_ | Operations | Trafic | Memary | |
w-Fiain 561280 0 1596
1 design Proct 558708 200 1280
b1 22688 a0 15
W bzb3 535813 520 1118
Fb2 160630 276 486

375171 250 623

@ monitor MR Fproct | g 0 0

A stimulu edit code Procz 2568 160 1
delete

properties
chart -

Figure 28: Mapping Behaviors to Processors.

File Edit Display Project Profiler Architecture Communication Tools Windows Hs\pl

BEHS8 JBRRoc ++81 0D FR2 A0
Mame)
& @ Main
M design
®
b1
e @bz
Fdone_1_to_2
A send
- 8 PE2_exe
® ! Ip_analysisz_with_cntl_1_to_z
A monitor
A stimulus

Figure 29: The Architecture Refinement Tool Introduces an Additional Level of Hierarchy.

(Figure 30). The bus-allocation can be called with the item ” Allocate busses ..." in the menu " Communica
tion”. Aswith the allocation of processors, we instantiate items of alist and give them unique names. Then
we choose the item ”Map channels ...” of the same menu which will show the toplevel channels and lets the
user map them to the allocated busses (Figure 31). If all toplevel channels have been mapped, the commu-
nication refinement tool can be called (item " Refine” in the menu " Communication”). The communication
refinement tool will inline bus-protocols in the design. If the protocols of the components do not match to
the connected bus, it will add additional components, called transducers which will transform one protocol to
another (Figure 32).

8.5 Refinement to RTL

The refinement of the register transfer level is till in early research stages and therefore there is no display
yet for it. We will develop displays and interfaces to this step as soon asit will be clear what information will
be exactly needed in order to get an efficient implementation.

Masterthesis of David Berner 44

Elle Edit Display Project Profler Architecture Communication Iools Windows ﬂe\p'
2HE fBRRoc ++4:up/E2 aNw
MName [
=@ Main
W design
o
-Fb1
Lo

0 Add or remove busses to design

A | | Available busses | Databits | Adress bits | Mbit‘s Allocated busses Name ‘ oK
LB D ouble Handshake il 3z 10 Double Handshake busn

B4 B4 1500 Cancel

] 4 30

16 16 130 T

B 8 1z J —,
Help

Figure 30: Allocating Busses for the Design.

RESpecCT [-[CTx]
File Edit Display Project Profiler Architecture Communication Tools Windows Hs\pl

EHS8 Y ERRoo +3+ 01 1D 52 a2

Map channels

Map top-level channels to busses

Channels [[J1syn [osyn | Busses 1Send | IRecw ‘ ok
IGSC b1 b3 PEZ_exe PE1_exe
GC_C2 PE1_cxe PEZ_exe | Cance
GC_C3 PE2_exe PE1_exe
GYC_v1_from_1_to_2 PE1_exe PEZ_exe Renarms
[= Help
= W=

Figure 31: Mapping of the Toplevel Channels.

8.6 Summary

Although thisis a very small example and therefore not all difficulties and specia cases occur, it shows the
basic refinement steps quite clearly. We see, that the user has to make certain decisions manually, other parts
are automated and their result will reflect the quality of the decision previously taken by the user. Like this
he gets feedback and can approach a solution more compliant with the original constraints in an iterative
process.

Masterthesis of David Berner 45

RESpecCT [_ O[]

Eile Edit Display Project Profiler Architecture Communication Tools Windows Help
BEHS fBRRoc++s: 0D T2 AR

T

|

IHame
|

% pet
L
it
- recv_PE1
& send_PE2

Figure 32: The Communication Refinement Tool Inserts Protocols and, if necessary, Transducers.

9 Conclusion

Although there has been done substantial work on this project, it is far from being finished. However, to
finish it has never been the goal. The goa has been to establish a basic framework, create the essential
widgets, come up with all basic concepts how things should be implemented and verify them.

To use Python as the programming language and QT as the toolkit was a keen try, but apparently it turned
out to be the right choice. In very short time we managed to build a nice, friendly user-interface - and got a
convenient scripting-interface for SIR almost for free.

RESpecCT isfar from being an industry-standard EDA-tool, but it shows the principles and methodol ogy
of SpecC. Once it gets the lacking functionality it may convince people in the industry that SpecC is the
Golden Way to go in System Level Synthesis. And perhapsin a couple of years SpecC marks the beginning
of designs of so far unknown complexity and performance.

Masterthesis of David Berner 46

References

[1] D. Ggski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, SpecC: Specification Language and Design
Methodology, Kluwer Academic Publishers, 2000.

[2] D. Ggjski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao, The SpecC Methodology, Technical Report ICS-
99-56, University of California, Irvine, December 1999.

[3] R. Domer, The SpecC Internal Representation, Technical Report 1CS-99, University of California,
Irvine, January 1999.

[4] DanR. Olsen, Jr., Developing User Interfaces, San Francisco: Morgan Kauffmann Publishers, 1998.
[5] Trolltech AS, QT: The Official Documentation, New Riders Publishing, Devember 2000.

[6] Trolltech AS, QT Online Reference Documentation v2.2.4, http://doc.trolltech.com/index.html, January
2001.

[7] Matthias Kalle Dalheimer, Programming with Qt, Kéln: O’ Reilly, 1999.
[8] David M. Beazley, SM G Users Manual v1.1, http://swig.sourceforge.net/doc.html, 1997.

[9] Guido van Rossum, Fred L. Drake, Jr., editor, Python Reference Documentation V2.0,
http://www.python.org/doc/current, October 2000.

[10] Mark lutz and David Ascher, Learning Python, O’ Reilly, March 1999.

[11] BruceEckel, Thinkingin C++, New Jersey: Prentice Hall, 1995.

[12] Herbert Schildt, C: The Complete Reference, Berkeley: Osborne McGraw-Hill, 1987.
[13] Herbert Schildt, Turbo C/C++, Berkeley: Osborne McGraw-Hill, 1990.

Masterthesis of David Berner 47

A Communication with the Tools

A.1 Profiler
A.2 Architecture Refinement Tool

The communication between the user-interface and the architecture refinement tool is made through annota-
tionsin the SIR-datastructure. The datastructureitself is passed through an API between them. Thefollowing
information has to be delivered in the specified format:

e Allocation Information
The allocation information is a global annotation. It should look like this:
-AR_PES = "namel:procl name2:proc2 ... nameN:procN”
where "namel” is the name of the instance of processor one and "procl” is the the name of the
processor-definition

e Partitioning Information
The partitioning information is annotated in every behavior-instance. It is defined like this:
AR_MAPPEDTO = "proc_name”
"proc_name” is the name of the processor the behavior-instance is mapped to. If there is no such
annotation, the behavior-instance should be mapped to the processor it’s parent is mapped to.

e Scheduling Information

In order to perform scheduling, the tool needsinformation about the order children of abehavior areto
be executed on a processor.

-AR_prnamel ="instlinst2 ... instN”

AR_prname2 ="instlinst2 ... instN”

AR_prname3 ="instlinst2 ... instN”

Thismeansthat for every processor thereis an annotation with an ordered list of the children runningon
this processor. If there is aflattened hierarchy, instl.inst1_1 and instl.inst1_2 are used instead of inst1
(presuming inst1_1, inst1_2 are child-behaviors of instl). The " _AR_prnamex” - annotations do not
exist in leaf-behaviors or flattened hierarchies since they only contain information about subbehaviors.

A.3 Communication Refinement-tool

The data-exchange with the communication refinement tool is made also through annotations in the SIR-
datastructure. We try to make them as similar as possible to the architecture refinement annotations, only we
usethe prefix " _CR_" for them.

e Allocation:
List of the busses instantiated. "Names” are the names of the instances, "bus’ are the names of the
actual busses.
_CR_BUSSES = "namel:busl name2:bus2 ... nameN:busN”

e Channel mapping:
Each channel-instance is annotated like this:
”_CR_BUS = busnamex”
where "busname” is the name of the appropriate bus-instance.

e Component-address:
_CR_ADDRESS = (INT) address

Masterthesis of David Berner 48

e Addressing scheme:
For each bus, there has to be specified an addressing-scheme

_CR_DEST_START = (INT) first bit of destination address
-CR_DEST_END = (INT) last bit of destination address
_CR_SOURCE_START = (INT) first bit of source address
_CR_SOURCE_END = (INT) last bit of source address
_CR_MULTI_START = (INT) first bit of destination address
_CR_MULTI_END = (INT) last bit of destination address

o Datatransfer semantics:
Each bus we annotate also with a data transfer semantics:

-CR_.SEND_ADDRESS=10r0
-CR.SEND_ID=10r0
-CR.SEND_TYPE=10r0
-CR.SEND_SIZE=10r0

¢ Name of the protocol:
-CR_PROTOCOL = protocolx

¢ Code of the protocol:
Additionally in each bus the code for the specified protocol has to be included (can be retrieved from
the protocol -database)

Masterthesis of David Berner

B Class Documentation

49

B.1 classallocation_imp - Enhancesthe Dialog allocation

Declared in module allocation_imp

B.1.1 Inheritance hierarchy:

allocation_imp.allocation_imp
allocation.allocation

B.1.2 Synopsis

class allocation_inp(allocation):

def
def
def
def
def

al | ocation_i np.
al | ocation_i np.
al | ocati on_i np.
al | ocati on_i np.
al | ocati on_i np.

allocation_inp. _init_ (self, parent, |abel = Processor’) # Initi
al l ocation_inp.add(self) # Adds an itemto the allocated -1ist.

al l ocation_inp.alloc_changed(item) # |Is invoked when the sel ecti
al l ocation_i np. avail _changed(iten) # |Is invoked when the sel ecti
all ocation_inp.renove(self) # Renove itemfromthe allocated -1i

Inherited from qt. Qbj ect
__init__(self, *args)

def qt.Qbj ect.

Inherited from qt. QN dget

def qt. QN dget.

__init__(self, *args)

Inherited from qt. QPai nt Devi ce
def qt.QPai ntDevice._ _del _(self)
def qt.QPaintDevice. _init__ (self, *args)

Inherited fromqt. Q

def qt.Q@._ del (self)

def qt.@.__init__ (self,

*args)

Inherited fromallocation.allocation

def
def
def
def
def
def
def

al | ocat i
al | ocat i
al | ocat i
al | ocati
al | ocati
al | ocat i
al | ocat i

on.
on.
on.
on.
on.
on.
on.

al | ocat i
al | ocat i
al | ocat i
al | ocati
al | ocati
al | ocat i
al | ocat i

on.
on.
on.
on.
on.
on.
on.

__init__(self, parent=None, name=None, nodal =0, fl =0)

add(sel)

al | oc_changed(sel f, a0)
avai | _changed(sel f, a0)
event (sel f, ev)
renove(sel f)
renane(sel f)

Inherited fromqt. QD al og

def

gt. Qi al

0g.

_init__(self, *args)

Masterthesis of David Berner 50

B.1.3 Description

B.1.3.1 It offersalist of predefined processorswith some data and let’sthe user allocatethem for the
design. Every instantiated processor (or bus) hasto be named (the user will be prompted for a name).

self.available: list of available items

self.allocated: list of alocated items
self.add_button: additemstoal | ocat ed
self.remove_button: removeitemsfromal | ocat ed

self.label: defines the type of items which are listed (e.g. " processor")

B.1.4 allocation_imp.allocation_imp.add(self)

Addsanitemtotheal | ocat ed -list. If anitem on the right side is marked, you will be asked for a name
(dialog name_enter). Theitem will be added on the list on the right hand side.

B.1.5 allocation_.imp.allocation_imp.alloc_changed(item)

Isinvoked when the selection of al | ocat ed changes Will be used to enable/diable the remove-button. Not
used yet

B.1.6 allocation_.imp.allocation_imp.avail_changed(item)

Is invoked when the selection of avai | abl e changes Will be used to enable/diable the add-button. Not
used yet

B.1.7 allocation_imp.allocation_imp.remove(self)

Removeitem fromtheal | ocat ed -list If no item is selected, an information-box will be shown, €lse the
selected itme will be removed from the list.

B.2 class ApplicationWindow - The MDI Application-window
Declared in module RESpecCT

B.2.1 Inheritance hierarchy:

RESpecCT.ApplicationWindow
gt.QMainWindow

Masterthesis of David Berner

B.2.2 Synopsis

51

cl ass Applicati onW ndow(Qvai nW ndow) :

def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.
def RESpecCT. Appl i cati onW ndow.

Inherited from qt. QMbj ect

_init__(self) # Initialize the main-w ndow

about (sel f) # Display an about-nmessagebox

about Q (sel f)

ar_refine(self) # Run the partitioning-refinenent-to
commrefine(self) # Call the comunication refinenen
desi gnUpdate(self) # Update the display with the sir
edit_sc(self, fileName=""', path="", line=0) # Open a
findfile(self, dir, file) # Find a SpecC-file in the
map_chnl (sel f) # Map high-1evel -channels to allocate
map_pr(self, click) # Map a behavior to a processor
nop(sel f) # Does nothing

openDesi gn(sel f, fil eNane=None) # Opens a new design
profile(self) # Run the profiler on the current desi
saveDesi gn(sel f, id=0) # Shows a savedi al og

sel ect _busses(self) # Do the allocation of busses
sel ect_procs(self) # Do the allocation of processors

def gt.Qject.__init__(self, *args)

Inherited from qt. Qvai nW ndow

def qt.Qvai nWndow. __init__ (sel

f, *args)

Inherited from qt. QPai nt Devi ce

def qt.QPaintDevice. del (sel

f)

def qt.QPaintDevice. init__ (self, *args)

Inherited fromqt. QX
def qt.Q@.__del _(self)
def qt.Q@._ _init_ (self, *args)

Inherited from qt. QN dget

def qt.QNdget. init__ (self, *args)

B.2.3 Description

This is the main-window. It contains a menu, treewindow and an mdi-workspace. And several toolbars. It
manages all main objects like the behavior-tree and keeps references to them. Importand class-variables:

self.design: Referenceto the actually displayed SIR_Design.

self.mbh: Reference to the mainbehavior of the design.

self.charts: List of open chartwidgets.

self.procs: List of allocated processors. Format: [(’

procnamel’,’instnamel’),(...),...]

Masterthesis of David Berner 52

self.busses: List of alocated busses. Format: [('busnamel’, instnamel’),(...),...]
self.sc_edits: Dictionary of open SpecC code editor windows. Format: {}
self.sir: Referenceto sc_tree-widget

self.ws. Referenceto MDI-workspace

self.menuBar: Menubar

self.statusBar: Statusbar

B.24 RESpecCT.ApplicationWindow.__init__(self)

Initialize the mai n-window
All variables are initialized, the menu isfilled, toolbars instantiated, the splitter, a tree and a QWorkspace
areinstantiated

B.25 RESpecCT.ApplicationWindow.ar _r efine(self)

Run the partiti oning-refinement-tool
To run this method, partitioning has to be performed and atop-level behaviors hasto be set. After running
it, the bahvior-tree will be updated with the resulting design

B.2.6 RESpecCT.ApplicationWindow.designUpdate(self)
Update the display with the sir-file in memory
Clears the behavior-tree and redisplays the contents of the design

B.2.7 RESpecCT.ApplicationWindow.edit_sc(sdlf, fileName=", path=", line=0)

Open a SpecC-file in the code-editor

Takes a filename, an optional path and an optional linenumber if the file exists it is opened and displyed
in a QMultiLineEdit The Caption of the titlebar of the editor will be the filename, the icon will be set to the
specc-icon

B.2.8 RESpecCT.ApplicationWindow.findfile(self, dir, file)

Find a SpecC-file in the current directory

This method takes a QDir and a filename. The directory and it's subdiractories are successively searched
for the specified filename. The comlete path of the first occurence is returned. if it is not found, an empty
string is returned

B.2.9 RESpecCT.ApplicationWindow.map_chnl(self)

Map high-level-channelsto allocated busses
Opens abus_map -dialog in order to let the user map the top-level channelsto the all ocated busses.

Masterthesis of David Berner 53

B.2.10 RESpecCT.ApplicationWindow.map_pr (sdlf, click)

Map a behavior to a processor

Gets called when the user clicks on a processor in the contextmenu of the behavior-tree. Determines
which processor was selected, puts the name of that processor into the column and annotates the instance in
the SIR_Design

B.2.11 RESpecCT.ApplicationWindow.nop(self)
Does nothing
Used for functionsin the GUI which are not yet implemented (e.g. buttons or menu-items
B.2.12 RESpecCT.ApplicationWindow.openDesign(self, fileName=None)
Opens anew design
Uses QFileDiaog; Loads SIR and sc-files, however if filename is specified, it is assumed to be a SIR-file
B.2.13 RESpecCT.ApplicationWindow.pr ofile(self)

Run the profiler on the current design, display some general results

First the design is instrumented, then compiled and simulated, then profiled and eventually analysed with
acertain weight-table. After al these steps have been successful, there are added some columns of genera
interest to the design (like traffic, operations and storage)

B.2.14 RESpecCT.ApplicationWindow.saveDesign(self, id=0)
Shows a savedialog
Letsthe user save the design as SIR or SC

B.2.15 RESpecCT.ApplicationWindow.select_busses(self)

Do the allocation of busses

Opens an allocation_imp -dialog, adjusts all the captions and columnnames in the dialog, Insets some
sample-datainto the list of available busses. After closing the dialog, alist of the allocated busses is stored
in self.busses.

B.2.16 RESpecCT.ApplicationWindow.select_procs(self)

Do the allocation of processors (achitecture exploration)

Opensthe processor-all ocation dial og (allocation_imp) and let’ s the user select processors. After thedialog
isclosed, acolumn" PE" isadded to thetree (if not already existent and the allocated processors are inserted
into the context-menu in order to give the user the possibility to perform partitioning.

B.3 classbus. map

Declared in module bus_map

Masterthesis of David Berner

B.3.1 Inheritancehierarchy:

bus_map.bus_map
alocation.allocation

B.3.2 Synopsis

cl ass bus_map(al |l ocation):

def
def
def
def
def

bus_map. bus_map. __init__ (self,

bus_map. bus_nap. add(sel f)
bus_map. bus_map. al | oc_changed(item
bus_map. bus_map. avai | _changed(item
bus_map. bus_map. renove(sel)

Inherited from qt. QMbj ect
_init__(self, *args)

def qt.Qbj ect.

Inherited from qt. QN dget
__init__(self, *args)

def qt. QN dget.

Inherited from qt. QPai nt Devi ce
def qt.QPaintDevice. del_ (self)

def qt.QPaintDevice. init__ (self,

Inherited fromqt. QX

def qt.Q@.__del _(self)

def qt.@.__init__ (self,

Inherited fromallocation.allocation
_init__(sel

def
def
def
def
def
def
def

al | ocati
al | ocati
al | ocati
al | ocat i
al | ocat i
al | ocat i
al | ocati

on.
on.
on.
on.
on.
on.
on.

al | ocati
al | ocati
al | ocati
al | ocat i
al | ocat i
al | ocat i
al | ocati

on.
on.
on.

on

*args)

add(sel f)

*args)

f ’

parent)

par ent =None,

al | oc_changed(sel f, a0)

event (sel f,
renove(sel f)
renane(sel f)

Inherited fromqt. QD al og

def

qt. QD al

0g.

__init__(self, *args)

B.4 classSC._item - Itemclass for the SC_tree

Declared in module spec_tree

ev)

.avai |l _changed(sel f, a0)
on.
on.
on.

nane=None,

nodal =0,

f1=0)

Masterthesis of David Berner 55

B.4.1 Inheritancehierarchy:

spec_tree.SC_item
gt.QListViewltem

B.4.2 Synopsis
class SCitem(QistViewten):

def spec_tree.SCitem _init_ (self, parent, inst, name) # |Initialize the Item

def spec_tree. SC_ item ar SchAnnot at e(sel f)

def spec_tree. SC item changeBeh(self, ask) # Change the SIR behavior of the item

def spec_tree.SCitemfill_colum(self, colum, nane) # fill the colum with the an
def spec_tree.SCitemgetltenist(self, Beh=None) # Return a List with all
def spec_tree.SC item nappedTo(self) # Returns the processor it is napped to.

Inherited fromqt. QX
def qt.Q@.__del _(self)
def qt.Q@._ _init_ (self, *args)

Inherited fromqt. Q.istViewtem
def qgt.QistViemtem __init__ (self, *args)

B.4.3 Description

Extends QlistViewltem with the functionality of displaying and handling with SIR_Bhvrinstances. Class
Variables:

self.Inst: Referenceto the currently displayed instance.
self.Beh: SIR_Behavior of currently displayed instance

self.proc: Processor this instance is mapped to (only after partitioning)

B.4.4 spec_tree.SC_item.__init__(self, parent, inst, name)

Initialize the Item
Chooses the corresponding icon for the Item. Creates al child-items

parent: parent-item
inst: instanceto be displayed

name name of the instance

B.4.5 spec_tree.SC_item.changeBeh(sdlf, ask)

Change the SIR_behavior of theitem.

Changes the SIR_Behavior of the item. Performs the change not only in the SC_tree, but aso in the SIR.
Checksis there is multiple instantiations of the parent-behavior. Asks if the change should be performed for
all instantiations or only for this.

Masterthesis of David Berner 56

B.4.6 spec_tree.SC_item.fill_column(self, column, name)
fill the column with the annotated value of note_name
column: isthe number of the column the value should be added

name; name of the annotation

B.4.7 spec_tree.SC_item.getltemlist(self, Beh=None)
Return aList with all Instances of a Behavior

Uses SC_tree.beh_dic to retrieve the information, returns alist of SC_items
B.4.8 spec_tree.SC_item.mappedTo(self)

Returns the processor it is mapped to.
If theitem is mapped to no processor, the mapping of the parent applies.

B.5 classSC_tree- Tree of Sir-behavior instances

Declared in module spec_tree

B.5.1 Inheritance hierarchy:

spec_tree.SC_tree
gt.QListView

B.5.2 Synopsis

class SC tree(QListView:
def spec_tree. SC tree.

init__(self, parent) # Initialize the SC tree.

def spec_tree.SC tree. arSchAnnotate(self) # Annotate the Design with the scheduling

def spec_tree.SC tree.clear(self) # Cean up tree

def spec_tree.SC tree.col _add(sel f, note_nanme, nane=None) # Add a profiling-colum
def spec_tree.SC tree. popup(self, item point, col) # D splay popup nmenu

def spec_tree.SC tree.readSC(self, file) # Display hierarchy of an SIR Design

def spec_tree.SC tree.readSIR(self, file) # Display hierarchy of an SIR Design

def spec_tree. SC tree. updateSel ected(self) # Keep list of selected itens correct

Inherited fromqt. QX
def qt.Q@.__del (self)
def qt.Q@._ _init_ (self, *args)

Inherited fromqt. Qi stView
def qt.QistView __init__ (self, *args)

Inherited from qt. QFrane
def qt.Qrane. __init__ (self, *args)

Masterthesis of David Berner 57

Inherited from qt. QMbj ect
def gqt.Qbject. init__ (self, *args)

Inherited from qt. QPai nt Devi ce
def qt.QPai ntDevice._ _del __(self)
def qt.QPaintDevice. init__ (self, *args)

Inherited fromqt. QScrol | View
def qt.Q@ScrollView __init__ (self, *args)

Inherited from qt. QN dget
def qt.QWNdget. init__ (self, *args)

B.5.3 Description

Extends QListview with the capabilities of reading and displaying the behavioral hierarchy of SIR_Design’s.
It assigns different icons to different types of behaviors and has a popup-menu with options to display and
modify the behaviors. Class Variables:

self.beh_dic: Dictionary of al contained behaviors of form {’beh_namel’:SC_iteml,...}. Mainly in order to
deal with arestriction of PyQt v 2.2 and earlier, that references to subclassed c-objects have to be kept.

self.column_dic: Dictionary containing all columns currently displaed in the tree. It has the form
{’col_namel’:(int)col_number, ...}. It is useful in order to check if a column exists and ant which
position.

self.app: Referenceto the Main-window
self.select_list: List of selected SC_items

B.5.4 spec_tree.SC_tree.__init__(salf, parent)
Initialize the SC_tree.
Allows selection of multiple behaviors, disable sorting.
B.5.5 spec_tree.SC_tree.ar SchAnnotate(self)
Annotate the Design with the scheduling-decisions made in the GUI
thisisnot in use yet, code existend was originally for something else, but can perhaps be re-used
B.5.6 spec_tree.SC_tree.clear (self)

Clean up tree
Thismethod overrides/extendsthe clean-method of QListView. Removesall displayeditemsand columns.
Also cleansup " self.beh_dic" and " self.column_dic" .

Masterthesis of David Berner 58

B.5.7 spec_tree.SC_tree.col_add(self, note_.name, name=None)
Add aprofiling-column in the behavior-tree

note_.name: Name of the Annotation in the SIR. the profiling-prefix is added automaticaly (e.g.
oper at i ons -> PR_operations

name: Name of the column to add. By default it will be the name of the annotation.

B.5.8 spec_tree.SC_tree.popup(self, item, point, col)

Display popup menu

This s the slot-function of the right-mouseclick event of the tree. It displays a popupmenu at the current
position and sets " self.app.item” to the currently selected item.
B.5.9 spec_tree.SC_tree.readSC(sdlf, file)

Display hierarchy of an SIR_Design

Takes a filename (including path) of a .SC-file, reads it and displaysit. Only the Top-level behavior is
loaded, then the class SC_item takes care of the rest of the design. Since the ' ReadSC’ -function of SIR does
not support preprocessor commands right now, the specc-file should not include any preprocessor commands
or be already preprocessed. TODO: Include preprocessor-functionality.
B.5.10 spec_tree.SC_treereadSIR(sdlf, file)

Display hierarchy of an SIR_Design

Takes a filename (including path) of a .SIR-file, reads it and displaysit. Only the Top-level behavior is
loaded, then the class SC_item takes care of the rest of the design.
B.5.11 spec_tree.SC_tree.updateSelected(self)

Keep list of selected items correct
This methosis a dot for selection_change. updates the list of selected items in order to provideit for the
convenience of other methods.

B.6 classscalestruct - Small helperclass for scaling

Declared in module bar _chart

B.6.1 Synopsis

cl ass scal estruct:
def bar_chart.scalestruct. init__ (self, i=0, |=0)

B.6.2 Description

contains only two values: intervall of the scale and limitvalue which is the maximal value of the scale

Masterthesis of David Berner 59

B.7 classQxBarChart - Barchart with arbitrary number of columnsand rows

Declared in module bar _chart

B.7.1 Inheritance hierarchy:

bar_chart.QxBarChart
gt.QWidget

B.7.2 Synopsis

cl ass xBar Chart (QN dget):
def bar_chart.BarChart. init__(self, parent=None, Chartdata=0, Style=1, nanme=""',
def bar_chart. QxBar Chart.cl ose(self, bool) # C ose and delete the Chart
def bar_chart. QxBar Chart. doGeonetry(self, P) # Calculate the dinmensions of the cont
def bar_chart. QBar Chart.drawChartData(self, P) # Draw the actual bars
def bar_chart. QxBar Chart. drawHori zontal Li nes(self, P) # Draw horizontal lines to re
def bar_chart. QxBar Chart.drawlLegends(self, P) # Draws the | egends for the chart.
def bar_chart. QxBar Chart.drawScal e(self, P) # Draws the x and y-scales and the grid
def bar_chart. QxBarChart.drawTitl es(self, P) # .
def bar_chart. QxBar Chart. drawXLegends(self, P) # Draw the Legends for the X-axis
def bar_chart. QxBar Chart. pai nt Event (sel f, PaintEvent) # On every PaintEvent the dis
def bar_chart. QxBar Chart.setChartData(sel f, Chartdata) # Set a new Chartdata

Inherited from qt. QMbj ect
def gt.Qject.__init__(self, *args)

Inherited fromqt. Q
def qt.Q@.__del (self)
def qt.Q@.__init__ (self, *args)

Inherited from qt. QPai nt Devi ce
def qt.QPaintDevice. del_ (self)
def qt.QPaintDevice. init_ (self, *args)

Inherited from qt. QN dget
def qt.QNdget. init__ (self, *args)

B.7.3 Description

Best display not morethan 5 rows an 15 columns are recommended (depending on the size on the screen you
choose).

B.7.4 bar_chart.QxBarChart._init__(self, parent=None, Chartdata=0, Style=1, name=", f=0)
Initialises the Chart

parent parent-widget on which it will be centered

Masterthesis of David Berner 60

Chartdata QxChartData conaining the data, labels and Fonts

Style show legends on x-axis or not

B.7.5 bar_chart.QxBarChart.close(self, bool)
Close and delete the Chart
First call the close-method of QWidget, then del etes the widget. It also removed the chart form the list of
charts held in the Application
B.7.6 bar_chart.QxBarChart.doGeometry(self, P)
Calculate the dimensions of the content
o self titleRect
o self.subTitleRect
self.footerRect
self.scaleRect
self.chartDataRect
self.xlegendsRect
o self.legendsRect

B.7.7 bar_chart.QxBarChart.drawChartData(self, P)
Draw the actual bars

e Pisthe painter where the datais painted into.

To draw the barsin the chart, we first detect where the zeroline will be.

The scaling of the bars is obtained from self.gxScale.

e Thecolorsfor the series are taken consecutively from the gxColorlist.

Between two series there will be asmall space

B.7.8 bar_chart.QxBarChart.drawHorizontalLines(self, P)
Draw horizontal lines to reflect the scale accross the entire barchart
e Thenumber of linesis equal to (number of scale items
o 1).
o Weiterate bottom up and draw a Draw line across the drawing area for the barchart.

e The QxScale method val ueScal eRati o(it) determines the ratio for the particular item in'y
space.

We need to iterate through the scaleval ues,and set the y-coordinate to self.gxScal e.valueScal eRatiofit)
* height of the datarect.

Masterthesis of David Berner

B.7.9 bar_chart.QxBarChart.drawlL egends(self, P)

Draws the legends for the chart.
| egendsRect . hei ght issplitinto ten if the number of series are less than ten, elseit is split into the
numer of columns. The colors are taken consecutively from QxCormonCol or

B.7.10 bar_chart.QxBarChart.drawScale(self, P)

Draws the x and y-scales and the grid
If on the Y-axisthe valueis > 1000 or the step of the scapleis < 1/100, the value is displayed in scientific
mode (e.g. 1. 3 e-5),if |value| is < 1000, the display is absolute

B.7.11 bar_chart.QxBarChart.drawTitles(self, P)

Draw the Title, Subtitle and Footer

B.7.12 bar_chart.QxBarChart.drawXL egends(self, P)

Draw the Legends for the X-axis

e Loop from left to right;

e Spacing iswidth/ len(xlegends).

o Split xlegendsRect into len(xlegends) rects

B.7.13 bar_chart.QxBar Chart.paintEvent(self, PaintEvent)

On every PaintEvent the display is refreshed

61

Updates the geometry of the widget and then repaints al of it's contents (data, legends and captions)

B.7.14 bar _chart.QxBarChart.setChartData(self, Chartdata)

Set anew Chart dat a
If itisNone, anew QxChar t Dat a -instanceis created. Initializesqxscal e and drawsthe chart for the

first time

B.8 classQxChartData - Containsall the data for the Chart

Declared in module bar _chart

B.8.1 Synopsis

cl ass Chart Dat a:
bar chart.
bar chart.
bar _chart.
bar _chart.
bar _chart.
bar chart.

def
def
def
def
def
def

QChart Dat a.
QChart Dat a.
X Chart Dat a.
X Chart Dat a.
X Chart Dat a.
QChart Dat a.

__init__ (self, data=[[400, 80, 150],

[111, 270, 543]],

col s(self) # Return nunber of colums

get Col umNare(sel f,
get Foot er (sel)

get Foot er Font (sel f)
get LegendsFont (sel)

pos)

I oW

Masterthesis of David Berner

def bar_chart. QxChart Dat a. get RowNane(sel f, pos)
def bar_chart. QxChart Dat a. get SubTitl e(sel f)

def bar_chart. QxChart Dat a. get SubTi t| eFont (sel f)
def bar_chart. ChartData.getTitl e(self)

def bar_chart. QxChartData.getTitl eFont(self)
def bar_chart. QxChart Dat a. get Val ue(self, c, r)
def bar_chart. QxChart Dat a. get XLegendsFont (sel f)

def bar_chart. QxChart Dat a. hi ghest Val ue(self) # Return the highest value of the char
def bar_chart. QxChart Dat a. | owest Val ue(sel f) # Return the |owest value of the chart

def bar_chart. xChartData.rows(self) # Return nunmber of rows
def bar_chart. QxChart Dat a. set Footer(sel f, footer, font)

def bar_chart. QxChart Dat a. set LegendsFont (font)

def bar_chart. QxChartData.set SubTitle(self, title, font)

def bar_chart. QxChartData.setTitle(self, title, font=0)

def bar_chart. QxChart Dat a. set XLegendsFont (font)

B.8.2 Description

self.data: Isof theform [[r1_1,r12,r1.3],[r21,r2.2,r2_3]]

self.rowlabels: [row_I1,row_2]

self.col_labels: [col_11,col_I2]

titles: Stringsfor title, subtitle and footer

fonts: Every label has afont

B.8.3 bar_chart.QxChartData.__init_(self, data=[[400, 80, 150], [111, 270,
row_labels=['breakfast’, 'lunch’], col_labels=['spam’, "'egg’, "ham’], title=")

Constructor takes data, row_|abels, col _|abels and title

62

543]],

all other data has to be set either directly: 'cd.subTitle="spanish” or through the set-methods:

cd. set SubTitle(’inquisition’)

B.9 class QxPie- Classrepresenting the pie of the widget.

Declared in module piewidget

B.9.1 Synopsis

cl ass QxPie:
def piew dget. QxPi
def pi ew dget. QxPi
def pi ew dget. QxPi
def piew dget. QxPi
def piew dget. QxPi
def piew dget. QxPi
def pi ew dget. QxPi

_init__(self) # Constructor
.append(sel f, slice) # Append slice
.arcLength(sel f, index) # Lenght of arc
.arcStart(self, index) # Start of the arc
.at(self, pos) #

.count (self) # Count slices

.insert(self, pos, slice) # Insert slice

® DD D®DDD

Masterthesis of David Berner 63

def piew dget. QxPie.sliceRatio(self, index) # Relative value of slice
def piew dget. QxPie. sliceRati oAsPercentageString(self, index) # Ratio as percentage
def piew dget. QxPie.sliceRati oAsString(self, index, precision=2)

B.9.2 Description
It contains a list of dices (self.list) containing the actual data and a number of accessor-methods which
calculate geometrical results.
B.9.3 piewidget.QxPie._init__(self)
Constructor
Initidlize the list.
B.9.4 piewidget.QxPie.append(self, slice)
Append slice
Append aslice at the end of thelist.
B.9.5 piewidget.QxPie.arcLength(self, index)
Lenght of arc
Returnsthe actual length of the arc of the dice at positioni ndex inthelist
B.9.6 piewidget.QxPie.arcStart(self, index)
Start of the arc

Returnsthe position wherethe arc of the dliceat i ndex starts.

B.9.7 piewidget.QxPie.at(self, pos)

Return the dlice at the position pos.

B.9.8 piewidget.QxPie.count(self)
Count slices
Return the number of dlices.
B.9.9 piewidget.QxPie.insert(self, pos, dlice)
Insert slice
Insert adlice at position pos.
B.9.10 piewidget.QxPie.dliceRatio(self, index)

Relative value of dlice
Returnstheration of the sum of all slices and thevalue of thesliceat i ndex Example: dicel=5slice2=10
dlice3=15; ration of slice2 is 10/ (5+10+15)= 1/3; slice 2 occupies one third of the circle (=120 degree).

Masterthesis of David Berner 64

B.9.11 piewidget.QxPie.dliceRatioAsPercentageString(self, index)

Ratio as percentage
Same as sliceRatio, only that it does return a string representing the percentage, not the actual ratio.

B.10 classQxPieWidget - Pie-Widget class.
Declared in module piewidget

B.10.1 Inheritance hierarchy:

piewidget. QxPieWidget
gt.QWidget

B.10.2 Synopsis

cl ass QxPi eW dget (QW dget):
def piew dget. QxPieWdget. init__ (self, parent=0, name=0, f=0, pie=0, align=1, show
def piew dget. QxPi eWdget.addSlice(self, slice, pos) # Add a slice to the pie
def piew dget. QxPi eWdget.close(self, bool) # C ose the Wdget
def piew dget. QxPi eW dget. doGeonetry(self) # Calculate the geonetry of the pie
def piew dget. QxPi eW dget . drawLegends(self, P) #
def piew dget. QxPi eWdget.drawSlices(self, P) #
def piew dget. QxPi eW dget . drawText (self, P) #
def piew dget. QxPi eWdget.drawTitl e(self, P) #
def piew dget. QxPi eW dget . expl odeFl ag(sel f, explode) # Set the distance between sli
def piew dget. QxPi eW dget . expl odePoi nt(self, ¢c) # "explode" the pie.
def piew dget. QxPi eW dget .| egendsAl i gnFl ag(self, align) # Set the alignnent of the
def piew dget. QxPi eW dget . pai nt Event (self, paintev) # Repaint the pie
def piew dget. QxPi eW dget.resizeEvent (sel f, resizeEV) #
def piew dget. QxPi eWdget.setPie(self, pie) # Insert a new pie
def piew dget. QxPi eWdget.set data(self, data, title="", subtitle="", footer="", leg
def piew dget. QxPi eW dget.showFl ag(sel f, show) # Set data shown in slice
def piew dget. QxPi eW dget . si gnal Styl eChanged(sel f, str)

Inherited from qt. QMbj ect
def qgt.Qbject. init__(self, *args)

Inherited fromqt. QX
def qt.Q@.__del _(self)
def qt.Q@._ _init_ (self, *args)

Inherited from qt. QPai nt Devi ce
def qt.QPai ntDevice._ _del __(self)
def qt.QPaintDevice. _init__ (self, *args)

Inherited from qt. QN dget
def qt.QWNdget. init__ (self, *args)

Masterthesis of David Berner

B.10.3 Description
Class for displaying pie-charts.

65

B.10.4 piewidget.QxPieWidget.__init__(sdlf, parent=0, name=0, f=0, pie=0, align=1, show=64, ex-

plode=128)
Constructor for pie-widgets

B.10.5 piewidget.QxPieWidget.addSlice(self, dlice, pos)
Add adliceto the pie
dice: aQXdlice-object

pos: the position where the sliceis to beinserted (integer)

B.10.6 piewidget.QxPieWidget.close(self, bool)

Close the Widget
first call widgets-close-method, then delete widget

B.10.7 piewidget.QxPieWidget.doGeometry(self)

Calculate the geometry of the pie
Determines hom much space for every element in the widget is there and positions them.

B.10.8 piewidget.QxPieWidget.drawL egends(self, P)

Draw the legends of the pie.

B.10.9 piewidget.QxPieWidget.drawSlices(self, P)

Draw the dlices of the pie (actual data). the colors are takes succesively from gxColorlist.

B.10.10 piewidget.QxPieWidget.drawText(self, P)

Draw thetext of the pie. Evaluates the show-flag.

B.10.11 piewidget.QxPieWidget.drawTitle(sdlf, P)

Draws thetitles of the pie (title, subtitle and footer). The specific font sets apply.

Masterthesis of David Berner 66

B.10.12 piewidget.QxPieWidget.explodeFlag(self, explode)
Set the distance between slices
The explode-flag means, that the slices ale dlightly pulled out, which might result in a better overview.
Possible values are:
B.10.13 piewidget.QxPieWidget.explodePoint(self, c)
" explode" the pie.
Evaluates the explode-flag
B.10.14 piewidget.QxPieWidget.legendsAlignFlag(self, align)
Set the alignment of the legends
align: flag with possible values: QxLegendsToL eft, QxL egendsToRight or QxNoL egends

B.10.15 piewidget.QxPieWidget.paintEvent(self, paintev)
Repaint the pie
redrawsthe title, slices, legends and the text.

B.10.16 piewidget.QxPieWidget.resizeEvent(self, resizeEV)

Resize the pie and update its geometry.

B.10.17 piewidget.QxPieWidget.setPie(self, pie)
Insert anew pie
Theold pieissaved assel f. ol dPi e
B.10.18 piewidget.QxPieWidget.set_data(sdlf, data, title=", subtitle=", footer=", legendstitle=")

initializes the pie with data and text and displaysit

dataisalist of value-pairslike [(" slicenamel” , valuel),(" slice2" , v2) ...] labelsis alist of three strings:
['title’,'subtitle’, footer’] font is the font for all the three labels
B.10.19 piewidget.QxPieWidget.showFlag(self, show)

Set datashown in slice
Inside a dlice can be displayed:

QxShowSliceRatio: QxShowValues: — QxShowL abels: — QxShowPercentage: -
QxShowValues: QxShowL abels: — QxShowPercentage: -
QxShowL abels: QxShowPercentage: —

B.11 classQxScale- Create a scale between two given double numbers

Declared in module bar_chart

Masterthesis of David Berner

B.11.1 Synopsis

cl ass xScal e:

def
def
def
def
def
def
def

bar _chart.
bar _chart.
bar _chart.
bar chart.
bar chart.
bar _chart.
bar _chart.

B.11.2 Description

XxScal e.
XxScal e.
XxScal e.
XxScal e.
XxScal e.
XxScal e.
XxScal e.

67

_init__(self, s=0, high=0) # either none, one or two paranet
count (self) # Return the nunber of scal eval ues

createScal e(self) # Create a new scal e

get Scal e(sel f) # Return self.scal eval ues

numintervall (self, Hi ghest) # Determ ne the nunber of interv
val ueScal eRatio(self, it) # Basically just determ nes the hei
zerolLi neRatio(self) # Deternine the position of the zeroline

Thisclasstriesto make ascale for aset of values. Theintervall and the maximal value of the scale are chosen
such, that there is only 4-6 scalevalues with very few digits (e.g. 0.1, 0.2, 0.3, 0.4). For creating a scale we
distinguish tree cases:

CASE 1. -x1........... L0 +X2

Creates an appropriate scale from -x1 to +x2. If |-x1| > x2 the negative side determines the scaling. If x2
>=|-x1| the positive side determines the scaling.

CASE2: 0

Scaling done from 0 to x2

CASE 3. x1

Scaling done from -x1 to 0.

B.11.3 bar_chart.QxScale._init_(self, s=0, high=0)

either none, one or two parameters

none: everything=0.0

one: self.scalevaluesisinitialized

two: low, high

B.11.4 bar_chart.QxScale.cr eateScale(self)

Create anew scae
Clear first the scalevalues list, just in case we have run this before, then fill it up. Here the values of
sel f. hi ghest andsel f. | owest areevaluated

B.11.5 bar_chart.QxScalenum_intervall(self, Highest)

Determine the number of intervalls needed
Attempts to choose the number of intervalls such, that the intervalls are as even as possible returns a
scalestruct (pair of intervall and limitvalue)

Masterthesis of David Berner 68

B.11.6 bar _chart.QxScale.valueScaleRatio(self, it)
Basically just determines the height of the bar
bari t istheindex of the scalevalue to be examined. The method returns the (relative) height of the resulting
B.11.7 bar _chart.QxScale.zeroL ineRatio(self)
Determine the position of the zeroline
o If beginningis equal to zero, theratiois 1
o If endisequal to zero, theratiois0

o If zeroisfound somewherein between: 1-(beg/(beg+end))

B.12 classQxSlice- Sliceof apie

Declared in module piewidget

B.12.1 Synopsis

class xSlice:
def piewidget.XxSlice._ init__ (self, v=0, label=0) # Constructor for a Slice.
def piew dget. QxSlice. setlLabel (self, |abel) #
def piew dget.QxSlice. setValue(self, v) #
def piew dget. QxSlice.value(self) #
def piew dget. QxSlice.valueString(self, precision=2) # return a string representign

B.12.2 Description

Represents a dlice of apie. It containsavaue and alabel.

B.12.3 piewidget.QxSlice.__init__(salf, v=0, label=0)

Constructor for aSlice.
Assigns an initial value and alabel

B.12.4 piewidget.QxSlice.setl abel(sdlf, label)

Assign anew label to the slice

B.12.5 piewidget.QxSlice.setValue(self, v)

Assign anew valueto the slice

Masterthesis of David Berner 69

B.12.6 piewidget.QxSlice.value(sdlf)

Accessthe variable Val ue

B.12.7 piewidget.QxSlice.valueString(self, precision=2)

return a string representign the value
pr eci si on optionally specifies the precision with which floating-point numbers are converted. Default
is 2 digits.

10

12

14

16

18

20

22

24

26

28

30

32

36

38

40

42

Masterthesis of David Berner

C Code-examples
C.1 Header-file of SIR_Behavior

/**/
I+ IntRep/Behavior.h: SpecC Interna Representation , Level 2, Behaviors #/
/**/
/+ Author: Rainer Doemer first version : 07/06/98 x/
/**/

I+ last update : 04/12/99 «/

#ifndef INTREP_.BEHAVIOR_H
#define INTREP_.BEHAVIOR_H

#include "Global .h”
#include "IntRep/Class.h”

[xxx enumeration types sokokokok kR kkokokokkokokok ok ok skosk sk sk skok skokokok skokskskosk skk sk sk sk sk sk kokokok skoskok
enum SIR_BehaviorClass /x supported behavior classifications x*/

{
SIR.BHVR_EXTERN, /x externa behavior (black box) x/

SIR_.BHVR_LEAF, [+ leaf behavior x/

SIR_.BHVR_SEQ, /%" clean” sequential behavior x/

SIR.BHVR_PAR, I+ " clean” concurrent behavior (par {}) */
SIR_.BHVR_PIPE, /%" clean” pipelined behavior (pipe{}) */

SIR. BHVR_FSM, /" clean” FSM—style behavior (fsm{}) */
SIR.BHVR_TRY, [+ " clean” exception—handling behavior (try {}) =/
SIR.BHVR_.OTHER [+ dirty " compound behavior x/

1

[type definitioNs sxssrr sttt ktkk ootk koo
typedef enum SIR_BehaviorClass SIR.BHVR_.CLASS;

typedef class SIR_Behavior sir_behavior ;

typedef SIR_List< sir_behavior > sir_behavior_list ;

typedef class SIR_Behaviors sir_behaviors ;

typedef ERROR (* sir_bhvr_fct)(sir_behavior x, voidx);
typedef class SIR_Design Sir_design ; I+ cyclic link =/

[xxx Class declarations sk s sk stk sk stk kot stk ok ok sk ok skt stk sk ok ok sk s

st stk ks stk sk stk skosk ok kok
[xxx SIR_Behavior xx/

[k sk ook ok ook ok kokok ok

class SIR_Behavior : /x behavior class in hierarchy tree */
public SIR_ListElen<SIR_Behavior>, /% is a list element x/

70

50

52

56

58

60

62

66

68

70

72

74

76

78

80

82

86

88

20

92

Masterthesis of David Berner 71

public SIR_Class /x and a class */

{

public:

SIR_.BHVR_CLASS BehaviorClass; /+ behavior classification (see above) x/

sir_function xMainMethod; /+ link to main method (or NULL) =/

sir_statement xFirstBhvrCall ; /x link to first subbehavior call (or NULL) %/

sir_statement xBehaviorCalls; /x link to cmpnd.stmnt. with behavior calls */
[+ (if SEQor PAR or PIPE, else NULL) %/

sir_transitions « Transitions; /x link to transitions (if FSM, else NULL) %/

sir_exceptions xExceptions; /% link to exceptions (if TRY, else NULL) %/

[+ AP Layer 1+ttt

SIR_Behavior([+ constructor #1 (initial) x/
sir_symbol *Symbol);

"SIR_Behavior(void); /% destructor =/

void FinishConstruction (void); /x perform construction phase 2 %/

void Updatelnfos(void); /+ update classification and links x/

static sir_behavior xGetBehavior(/x obtain behavior pointer (level 2) x/
sir_symbol *Symbol); [+ from a behavior symbol x/

[+t AP Layer 2]

static sir_behavior x Create(/% create a new behavior x/
const char xName, /+ (returns NULL if SIR_Error) */

sir_design *Design,
BOOL Internal = FALSE); /% default : without body */
sir_behavior *Copy(I+ create an exact copy with new name x/
const char xName, /x (returns NULL if SIR_Error) */
BOOL Strip = TRUE);
ERROR Rename(/x rename this behavior */
const char xName);
ERROR Delete(void); /+ delete this behavior x/

sir_behaviors * GetList(void); /+x obtain a pointer to the behavior list =/

SIR_.BHVR_CLASS GetClass(void); /x obtain this behaviors classification */

BOOL Findinstance(I+ find an instance of this behavior x/
sir_bhvrinst xxBhvrinst = NULL, /x return instance found x/
sir_bhvrinst x Lastinstance = NULL); /x continue search here x/

ERROR CreateBody(void); /% create a minimal behavior body x/
ERROR DeleteBody(void); /x delete the behavior body */
/% (so that it becomesan external behavior) %/

ERROR MakeM ainM ethod(/x generates a main method (template) */

96

98

100

102

104

106

108

110

112

114

116

118

120

122

124

126

128

Masterthesis of David Berner 72

SIR_.BHVR_CLASS BehaviorClass, /x intended behavior class */

sir_bhvrinst xFirstBhvr = NULL); /% first subbehavior */
b

[k sk koxokokxokok kokok x|

[xxx SIR_Behaviors xxx/

[k sk ook okokokkokok tokokok |
class SIR_Behaviors : /x behavior classes list x/

public SIR List<SIR_Behavior> /x is simply a list of behaviors x/
{ /= with additional methods /
public:

[[+++++++++++++++HH+++ 4+ AP Layer 1+ttt

SIR_Behaviors(/% constructor #1 */
sir_behavior x FirstEntry = NULL);
“SIR_Behaviors(void); /% destructor x/
static sir_behaviors * BuildList ([+ build the list of behaviors x/
sir_symbols xGloba Symbols); /% (phase 1) /
void FinishConstruction (void); I+ perform construction phase 2 x/
sir_behavior * Insert (/% insert a prepared element x/

sir_behavior xBehavior);

[+t AP Layer 2]

sir_behavior «Find(/x find a behavior with this name x/
const char xName); I (returns NULL if not found) x/

h

#endif /+ INTREP_BEHAVIOR_H x/
/x EOF IntRep/Behavior.h «/

C.2 Interface-file of SIR_Behavior

/x SWIG — Header—file for Python Wrapper

File: Behavior.i
Date generated : 12/5/2000 18:17h
Author: David Berner x/

%module Behavior

%f
#include " IntRep/Behavior.h”

10

12

14

16

18

20

22

24

26

28

30

32

36

38

40

42

46

50

52

56

Masterthesis of David Berner 73

#include "Global .h”
#include " IntRep/Class.h”
%}

%import Class. i

enum SIR_BehaviorClass /x supported behavior classifications x*/

{

SIRBHVR_EXTERN, /x externa behavior (black box) x/

SIR.BHVR_LEAF, I+ leaf behavior */

SIR_.BHVR_SEQ, /%" clean” sequential behavior x/

SIR.BHVR_PAR, /+ " clean” concurrent behavior (par {}) */
SIR_.BHVR_PIPE, /%" clean” pipelined behavior (pipe{}) */

SIR. BHVR_FSM, /" clean” FSM—style behavior (fsm{}) =/
SIR.BHVR_TRY, [+ " clean” exception—handling behavior (try {}) =/
SIR.BHVR_.OTHER /" dirty " compound behavior /

b

[type definitions sokssksosoksiorsoksiorstokokstoksoksk ook kool skotoksokkotok ok ok skok ok o
typedef enum SIR_BehaviorClass SIR.BHVR_.CLASS;

typedef class SIR_Behavior sir_behavior ;

typedef SIR_List< sir_behavior > sir_behavior_list ;

typedef class SIR_Behaviors sir_behaviors ;

typedef ERROR (* sir_bhvr_fct)(sir_behavior x, voidx);
typedef class SIR_Design Sir_design ; I+ cyclic link =/

[xxx Class declarations sk sk sk sk sk sk stk kst skt ok ok sk ok skt stk ok sk ok sk s

st stk ks stk sk stk skosk ok kok
[xxx SIR_Behavior xx/

[kt sk s ook sk ok ook

class SIR_Behavior : /x behavior class in hierarchy tree x/
public SIR Class /x and a class x/

{

public:

unsigned long UnitlD;

/I automatic template—path insert begin (list —element):

SIR_Behavior xSucc(void); /x Successor */
SIR_Behavior xPred(void); /% Predecessor x/
SIR_Behaviors xHead(void); /% List head x/

void Remove(void); /% remove myself x/

/I automatic template—path insert end (list —element)

58

60

62

66

68

70

72

74

76

78

80

82

86

88

920

92

96

98

100

102

104

Masterthesis of David Berner 74

SIR_.BHVR_CLASS BehaviorClass; /x behavior classification (see above) */
sir_function xMainMethod; /x link to main method (or NULL) %/
sr_statement x FirstBhvrCall ; /« link to first subbehavior call (or NULL) %/
sir_statement xBehaviorCalls; /« link to cmpnd.stmnt. with behavior calls */
[+ (if SEQor PAR or PIPE, else NULL) %/
sir_transitions x Transitions; /x link to transitions (if FSM, else NULL) %/
sir_exceptions xExceptions; /+ link to exceptions (if TRY, else NULL) %/

[[+++++++++++++++HH+ -+ AP Layer 2 ++++++ bbb

static SIR_Behavior xCreate(/% create a new behavior */

const char xName, /x (returns NULL if SIR_Error) */
sir_design *Design,
BOOL Internal = FALSE); [+ default : without body x/
SIR_Behavior «Copy(/% create an exact copy with new name x/
const char xName, /x (returns NULL if SIR_Error) */
BOOL Strip = TRUE);
ERROR Rename(/+ rename this behavior x/
const char xName);
ERROR Delete(void); /+ delete this behavior x/

SIR_Behaviors xGetList(void); /+ obtain a pointer to the behavior list =/
SIR_.BHVR_CLASS GetClass(void); /x obtain this behaviors classification x/

BOOL Findlnstance([+ find an instance of this behavior */
SIR_Bhvrinst *xBhvrinst = NULL, /% return instance found x/
SIR Bhvrinst xLastinstance = NULL); /x continue search here x/

ERROR CreateBody(void); /% create a minimal behavior body */
/% (so that it becomesan interna behavior) %/
ERROR DeleteBody(void); [+ delete the behavior body x/
/% (so that it becomesan externa behavior) x/
ERROR MakeM ainM ethod(/* generates a main method (template) */
SIR_.BHVR_CLASS BehaviorClass, I+ intended behavior class x/
sir_bhvrinst xFirstBhvr = NULL); /% first subbehavior x/
b
[tk sorokoskkokok ok ok kokok ok
[xxx SIR_Behaviors xx*/
[tk sorokoskkokok ok ok kokok ok
class SIR_Behaviors /x behavior classes list */

{ /+ with additional methods =/

106

108

110

112

114

116

118

120

122

124

126

128

130

10

12

14

16

18

Masterthesis of David Berner 75

public:

/I automatic template—path insert begin: (list)

bool Empty(void); I+ test for empty list 2/

unsigned int NumElements(void); /x number of list elements x/

SIR_Behavior * First (void); /% first element (NULL if empty) */
SIR_Behavior xLast(void); [+ last element (NULL if empty) =/
SIR_Behavior xPrevious(void); /+ previous element (NULL if none) x/
SIR_Behavior «Curr(void); I+ current element (NULL if none) x/
SIR_Behavior xNext(void); /* next element (NULL if none) x/

SIR_Behavior xPrepend(SIR_Behavior «xElem);

SIR_Behavior xAppend(SIR_Behavior xElem);

SIR_Behavior * InsertBefore (SIR_Behavior «Elem,SIR_Behavior xSucc);
SIR_Behavior * InsertAfter (SIR_Behavior xElem,SIR_Behavior xPred);
SIR_Behavior xRemove(SIR_Behavior xElem);

SIR_Behaviors xConcat(SIR_Behaviors xAppendix);

SIR_Behaviors x Precat (SIR_Behaviors xPrependix);

/I automatic template—path insert end (list)
[[++++++tt e AP Layer 2 bbb

sir_behavior «Find(/x find a behavior with this name x/
const char xName); I+ (returns NULL if not found) =/
h

C.3 SWIG interface-file generator: template.py

template.py script for automatical generation of headerfiles for SWIG
David Berner 11/30/2000

import string , sys, time

def find_template ():
tm = time. localtime (time.time())
tm_str = str (tm[1])+’ /" +str (tm[2])+" /" +str (tm[0])+" -’ +str (tm[3])+’ " +str (tm[4])
print tm_str

outfile . write(’ /+.SWIG_—_Header—file_for_Python_Wrapper_\n_File:....’ +sys.argv[2] +'.i\n_Date_generated:.’ +tm_str+'h

In=infile . readline ()

outfile . write(In)

print sys.argv

while not(In == ""):

dlist = In. split ()

if len(dlist)>1and dlist [0] ==" class’ and dlist [2] =="":
sir_type = dist [1]
cl_type = get_cl (dist)

20

22

24

26

28

30

32

36

38

40

42

50

52

56

58

60

62

66

Masterthesis of David Berner 76

patch(cl_type, sir_type,In)
In=infile . readline ()

outfile
a=0

.write(In)

def patch(cl_type, sir_type,In):

_Remove_the_inheritance—statement_and._insert _adapted_method— prototypes™”

print '\npatching.’, cl_type,’.in_class.’, sir_type,”
while not (In. split ()[0] == ’public:’):
In = infile . readline ()

outfile

.write(In)

if cl_type ==" list —element’:

outfile

outfile .
outfile .

outfile
outfile
outfile

.write(’ \n//. automatic.template—path_insert _begin.(list —element):\n\n")
writelines (sir_type , ' _xSucc(void); .. . Successor .x/\Nn")

writelines (sir_type , '_xPred(void); e I+ Predecessor _x/\n")

. writelines (sir_type ,’ s._xHead(void); List_head_x/\n")

.write(’ void_Remove(void); Jx_remove.myself_x/\n’)

.write(’ \n//. automatic._template—path_insert _end_(list —element)\n\n")

eif cl_type ==" list ":

outfile
outfile
outfile
outfile
outfile
outfile

outfile .
outfile .

outfile

outfile .
outfile .
outfile .

.write(’ \n//. automatic.template—path.insert _begin:.(list)\n\n")

.write(’ bool .Empty(void);\ t\t/«._ test _for_empty._list ?_«/\n")

. write(’ unsigned.int _.NumElements(void);\ t/x_number_of _list _.elements._x/\n")

.write(sir_type[:—1]+ _x First (void);\ t\t/«. first _element_(NULL.if_empty)._x/\n")

~write(sir_type[:—1]+ «xLast(void);\ t\t/«. last _.element_ (NULL.if_empty)_«/\n")

.write(sir_type[:—1]+ _xPrevious(void);\ t/x._previous_element (NULL .if _.none) «/\n")

writelines (sir_type [:—1]," _«xCurr(void);\ t\t/_ current .element (NULL _if .none) _+/\n")

writelines (sir_type [:—1],’ xNext(void);\ t\t/x.next_element (NULL .if_none) _«/\n")

. writelines (sir_type [:—1]," _xPrepend(’, sir_type [:—1]," \ t_«xElem);\n")

writelines (sir_type [:—1]," _xAppend(’, sir_type [:—1], " \ t_xElem);\n")

writelines (sir_type [:—1]," . InsertBefore (', sir_type [:—1]," \t_xElem,, sir type [:—1],” .«Succ);\n’)
writelines (sir_type [:—1],’ _x InsertAfter (", sir_type [:—1]," \t_xElem, , sir_type [:—1]," «Pred);\n’)

outfile . writelines (sir_type [:—1], « Remove(’,sir_type [:—1], * Elem);\n’")
the remove—method existstwo times, one is removed :)

outfile
outfile
outfile
outfile

. writelines (sir_type [:—1],” .xRemove(’, sir_type[:—1]," _xElem);\n’)
. writelines (sir_type,’ .xConcat(’, sir_type ,’ xAppendix);\n’)

. writelines (sir_type,” .xPrecat (', sir_type ,’ _xPrependix);\n’)
.write(’ \n//_ automatic.template—path_insert_end_(list)\n\n")

def get.cl (dlist):

cl_tp=0

_Determine_if _the_class_is.. inherited _fom_a_template—class_and_which.

RELET]

while not (dist [0] == "{"):
In=infile . readline ()

dist =

In. split ()

if (not(string .find(In,” SIR_ListElem<’) == —1)):

cl_tp

=' list —element’

dif not (string.find(In,” SIR_List<’) == —1):

70

72

76

78

80

Masterthesis of David Berner

cl_tp="list”’
else:
outfile . write(In)
return cl_tp

if len(sys.argv) > 1:
infile = open(sys.argv[1],’r")
outfile = open(sys.argv[2]+'.i’,"W’)
a = find_template ()
infile . close ()
outfile . close ()

else:
print "\nusage:.python._template. py_header—file_module—name’

77

