
Development of a Visual Refinement- and
Exploration-Tool for SpecC

David Berner
Prof. Dirk Jansen

Prof. Daniel D. Gajski

Diplomarbeit
February 22, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

mail@davidberner.de
http://www.cecs.uci.edu/˜berner

Development of a Visual Refinement- and
Exploration-Tool for SpecC

David Berner
Prof. Dirk Jansen

Prof. Daniel D. Gajski

Diplomarbeit
February 22, 2001

Center for Embedded Computer Systems
University of California, Irvine
Irvine, CA 92697-3425, USA

mail@davidberner.de
http://www.cecs.uci.edu/˜berner

Abstract

This document describes the development of RESpecCT, a refinement and exploration-tool for the SpecC
technology. RESpecCT is a graphical tool which assists the designer starting from the functional or spec-
ification model of the design in refining it using the SpecC methodology through different levels to the
implementation- or register transfer-level. It visualizes information in a way to simplify the process of tak-
ing decisions about details of the design, gives these decisions to different refinement tools and visualizes
their results.

Masterthesis of David Berner i

Erklärung

Ich versichere, dass ich diese Diplomarbeit selbst¨andig verfasst und keine anderen als die angegebenen
Hilfsmittel verwendet habe.
Irvine (USA), den 22. Februar 2001

David Berner

Diese Diplomarbeit ist urheberrechtlich gesch¨utzt, unbeschadet dessen wird folgenden
Rechts¨ubertragungen zugestimmt:

� der Übertragung des Rechts zur Vervielf¨altigung der Diplomarbeit f¨ur Lehrzwecke an der Fach-
hochschule Offenburg (x16 UrhG),

� der Übertragung des Vortrags-, Auff¨uhrungs-, und Vorf¨uhrungsrechts f¨ur Lehrzwecke durch Profes-
soren der Fachhochschule Offenburg (x19 UrhG),

� der Übertragung des Rechts auf Wiedergabe durch Bild- oder Tontr¨ager an die Fachhochschule
Offenburg (x21 UrhG).

Irvine (USA), den 22. Februar 2001

David Berner

Masterthesis of David Berner ii

Acknowledgment

I would like to thank Prof. Dr. D. Jansen from the Fachhochschule Offenburg and Prof. Dr. D. Gajski from
the Center of Embedded Computer Systems, University of California Irvine for acting as advisors for this
thesis. They gave this great opportunity to do it abroad in this marvelous environment.

Many thanks to Andreas Gerstlauer who was always there for questions and discussions (in English as
well as in German).

Thanks also to all the members of the SpecC group with whom i tried hard to do good work in order to
establish SpecC as a world standard.

Thanks to Judith who waited all this time so patiently for me.

Masterthesis of David Berner iii

Contents

1 Introduction 1
1.1 System-level design . .. 1
1.2 Goal . 1
1.3 Related Work 1

2 The SpecC Language 3
2.1 C+Spec = SpecC 3
2.2 Special Features 4
2.3 Summary . 4

3 The SpecC Methodology 5
3.1 Overview . 5
3.2 Specification Model . .. 6
3.3 Architecture Exploration 6
3.4 Communication Synthesis . .. 7
3.5 Summary . 8

4 Specification 9
4.1 Edit . 9
4.2 Project Management .. 9
4.3 Build . 10

4.3.1 Compiler 10
4.3.2 Debugger 10
4.3.3 Simulation . .. 10

4.4 Profiling, Estimation .. 10
4.5 Architecture exploration 11

4.5.1 Allocation 12
4.5.2 Partitioning . .. 12
4.5.3 Scheduling . .. 12

4.6 Communication synthesis 12
4.7 Summary . 13

5 Choosing the Tools 15
5.1 Different GUI Toolkits . 15
5.2 QT versus wxWindows. 16
5.3 PyQt . 17

5.3.1 Advantages . .. 17
5.3.2 A small example 17

6 SIR Wrapper 19
6.1 What is SIR 19

6.1.1 Example: SIRBehavior . 19
6.2 SWIG . 19
6.3 Creating SWIG-Interface-files. 22
6.4 Modifications and problems .. 22

6.4.1 Templates 23
6.4.2 Typedefs 24

Masterthesis of David Berner iv

6.4.3 Pointer to Pointer 24
6.4.4 Function Overloading. 24
6.4.5 Other Issues . .. 25

6.5 Compilation 25
6.5.1 Unix . 25
6.5.2 Windows 26

6.6 Summary . 26

7 Implementation 27
7.1 First Steps. 27
7.2 The Main Window . .. 28

7.2.1 Behavior Tree .. 28
7.2.2 MDI Workspace 28

7.3 Code Editor 29
7.4 Properties Dialog 31
7.5 Profiler . 31

7.5.1 Columns 32
7.5.2 Pie Chart 33
7.5.3 Bar Chart 34

7.6 Architecture Refinement Tool .. 34
7.6.1 Allocation Dialog 34
7.6.2 Behavior Mapping . .. 35
7.6.3 Scheduling . .. 36

7.7 Communication Refinement Tool 36
7.7.1 Bus Allocation . 36
7.7.2 Channel Mapping 36

7.8 Summary . 37

8 Example 39
8.1 Loading and Examining Design 39
8.2 Profiling . 41
8.3 Architecture Exploration 42
8.4 Communication Refinement .. 42
8.5 Refinement to RTL . .. 43
8.6 Summary . 44

9 Conclusion 45

References 46

A Communication with the Tools 47
A.1 Profiler . 47
A.2 Architecture Refinement Tool .. 47
A.3 Communication Refinement-tool 47

Masterthesis of David Berner v

B Class Documentation 49
B.1 class allocationimp - Enhances the Dialogallocation . 49

B.1.1 Inheritance hierarchy:. 49
B.1.2 Synopsis 49
B.1.3 Description . .. 50
B.1.4 allocationimp.allocationimp.add(self) . .. 50
B.1.5 allocationimp.allocationimp.alloc changed(item). 50
B.1.6 allocationimp.allocationimp.avail changed(item). 50
B.1.7 allocationimp.allocationimp.remove(self) . 50

B.2 class ApplicationWindow - The MDI Application-window. 50
B.2.1 Inheritance hierarchy:. 50
B.2.2 Synopsis 51
B.2.3 Description . .. 51
B.2.4 RESpecCT.ApplicationWindow.init (self) . 52
B.2.5 RESpecCT.ApplicationWindow.arrefine(self) 52
B.2.6 RESpecCT.ApplicationWindow.designUpdate(self). 52
B.2.7 RESpecCT.ApplicationWindow.editsc(self, fileName=”, path=”, line=0) 52
B.2.8 RESpecCT.ApplicationWindow.findfile(self, dir, file) 52
B.2.9 RESpecCT.ApplicationWindow.mapchnl(self) . 52
B.2.10 RESpecCT.ApplicationWindow.mappr(self, click) 53
B.2.11 RESpecCT.ApplicationWindow.nop(self) .. 53
B.2.12 RESpecCT.ApplicationWindow.openDesign(self, fileName=None). 53
B.2.13 RESpecCT.ApplicationWindow.profile(self). 53
B.2.14 RESpecCT.ApplicationWindow.saveDesign(self, id=0) 53
B.2.15 RESpecCT.ApplicationWindow.selectbusses(self). 53
B.2.16 RESpecCT.ApplicationWindow.selectprocs(self) 53

B.3 class busmap . 53
B.3.1 Inheritance hierarchy:. 54
B.3.2 Synopsis 54

B.4 class SCitem - Itemclass for the SCtree . 54
B.4.1 Inheritance hierarchy:. 55
B.4.2 Synopsis 55
B.4.3 Description . .. 55
B.4.4 spectree.SCitem. init (self, parent, inst, name) 55
B.4.5 spectree.SCitem.changeBeh(self, ask) . .. 55
B.4.6 spectree.SCitem.fill column(self, column, name). 56
B.4.7 spectree.SCitem.getItemlist(self, Beh=None) 56
B.4.8 spectree.SCitem.mappedTo(self) 56

B.5 class SCtree - Tree of Sir-behavior instances 56
B.5.1 Inheritance hierarchy:. 56
B.5.2 Synopsis 56
B.5.3 Description . .. 57
B.5.4 spectree.SCtree. init (self, parent) 57
B.5.5 spectree.SCtree.arSchAnnotate(self) 57
B.5.6 spectree.SCtree.clear(self) .. 57
B.5.7 spectree.SCtree.coladd(self, notename, name=None) 58
B.5.8 spectree.SCtree.popup(self, item, point, col) 58
B.5.9 spectree.SCtree.readSC(self, file) 58

Masterthesis of David Berner vi

B.5.10 spectree.SCtree.readSIR(self, file) 58
B.5.11 spectree.SCtree.updateSelected(self) 58

B.6 class scalestruct - Small helperclass for scaling . .. 58
B.6.1 Synopsis 58
B.6.2 Description . .. 58

B.7 class QxBarChart - Barchart with arbitrary number of columns and rows 59
B.7.1 Inheritance hierarchy:. 59
B.7.2 Synopsis 59
B.7.3 Description . .. 59
B.7.4 barchart.QxBarChart.init (self, parent=None, Chartdata=0, Style=1, name=”, f=0) 59
B.7.5 barchart.QxBarChart.close(self, bool) 60
B.7.6 barchart.QxBarChart.doGeometry(self, P). 60
B.7.7 barchart.QxBarChart.drawChartData(self, P) 60
B.7.8 barchart.QxBarChart.drawHorizontalLines(self, P). 60
B.7.9 barchart.QxBarChart.drawLegends(self, P). 61
B.7.10 barchart.QxBarChart.drawScale(self, P) .. 61
B.7.11 barchart.QxBarChart.drawTitles(self, P) .. 61
B.7.12 barchart.QxBarChart.drawXLegends(self, P) 61
B.7.13 barchart.QxBarChart.paintEvent(self, PaintEvent). 61
B.7.14 barchart.QxBarChart.setChartData(self, Chartdata). 61

B.8 class QxChartData - Contains all the data for the Chart 61
B.8.1 Synopsis 61
B.8.2 Description . .. 62
B.8.3 barchart.QxChartData.init (self, data=[[400, 80, 150], [111, 270, 543]],

row labels=[’breakfast’, ’lunch’], col labels=[’spam’, ’egg’, ’ham’], title=”) 62
B.9 class QxPie - Class representing the pie of the widget. 62

B.9.1 Synopsis 62
B.9.2 Description . .. 63
B.9.3 piewidget.QxPie.init (self) . 63
B.9.4 piewidget.QxPie.append(self, slice) 63
B.9.5 piewidget.QxPie.arcLength(self, index) . .. 63
B.9.6 piewidget.QxPie.arcStart(self, index) 63
B.9.7 piewidget.QxPie.at(self, pos) .. 63
B.9.8 piewidget.QxPie.count(self) .. 63
B.9.9 piewidget.QxPie.insert(self, pos, slice) 63
B.9.10 piewidget.QxPie.sliceRatio(self, index) . .. 63
B.9.11 piewidget.QxPie.sliceRatioAsPercentageString(self, index). 64

B.10 class QxPieWidget - Pie-Widget class.. 64
B.10.1 Inheritance hierarchy:. 64
B.10.2 Synopsis 64
B.10.3 Description . .. 65
B.10.4 piewidget.QxPieWidget.init (self, parent=0, name=0, f=0, pie=0, align=1,

show=64, explode=128) 65
B.10.5 piewidget.QxPieWidget.addSlice(self, slice, pos) 65
B.10.6 piewidget.QxPieWidget.close(self, bool) .. 65
B.10.7 piewidget.QxPieWidget.doGeometry(self) .. 65
B.10.8 piewidget.QxPieWidget.drawLegends(self, P) 65
B.10.9 piewidget.QxPieWidget.drawSlices(self, P). 65

Masterthesis of David Berner vii

B.10.10piewidget.QxPieWidget.drawText(self, P) .. 65
B.10.11piewidget.QxPieWidget.drawTitle(self, P) .. 65
B.10.12piewidget.QxPieWidget.explodeFlag(self, explode). 66
B.10.13piewidget.QxPieWidget.explodePoint(self, c) 66
B.10.14piewidget.QxPieWidget.legendsAlignFlag(self, align) 66
B.10.15piewidget.QxPieWidget.paintEvent(self, paintev) 66
B.10.16piewidget.QxPieWidget.resizeEvent(self, resizeEV). 66
B.10.17piewidget.QxPieWidget.setPie(self, pie) . .. 66
B.10.18piewidget.QxPieWidget.setdata(self, data, title=”, subtitle=”, footer=”, legendstitle=”) 66
B.10.19piewidget.QxPieWidget.showFlag(self, show) 66

B.11 class QxScale - Create a scale between two given double numbers. 66
B.11.1 Synopsis 67
B.11.2 Description . .. 67
B.11.3 barchart.QxScale.init (self, s=0, high=0). 67
B.11.4 barchart.QxScale.createScale(self) 67
B.11.5 barchart.QxScale.numintervall(self, Highest) 67
B.11.6 barchart.QxScale.valueScaleRatio(self, it). 68
B.11.7 barchart.QxScale.zeroLineRatio(self) 68

B.12 class QxSlice - Slice of a pie .. 68
B.12.1 Synopsis 68
B.12.2 Description . .. 68
B.12.3 piewidget.QxSlice.init (self, v=0, label=0) 68
B.12.4 piewidget.QxSlice.setLabel(self, label) . .. 68
B.12.5 piewidget.QxSlice.setValue(self, v) 68
B.12.6 piewidget.QxSlice.value(self). 69
B.12.7 piewidget.QxSlice.valueString(self, precision=2) 69

C Code-examples 70
C.1 Header-file of SIRBehavior . 70
C.2 Interface-file of SIRBehavior . 72
C.3 SWIG interface-file generator: template.py 75

Masterthesis of David Berner viii

List of Figures

1 System-level Design in the Y-Chart. .. 2
2 Language Comparison [1]. . .. 3
3 The SpecC Methodology [1] .. 5
4 The small example-application.. 18
5 SIR Level 1 [3] . 20
6 SIR Level 2 [3] . 21
7 The RESpecCT Main Window. 27
8 MDI Workspace 29
9 Code Editor. 30
10 Properties Dialog. 31
11 Columns with Profiling Information .. 32
12 Pie-chart Widget. 33
13 Bar-chart Widget. 34
14 Processor Allocation. .. 35
15 Nameenter Dialog. . .. 36
16 Behavior Mapping. . .. 37
17 Allocation of Busses. .. 38
18 Map the Top-level Channels to Busses.. 38
19 Load an Example Design. 39
20 The Context Menu. . .. 39
21 Variables of the Behavior. 40
22 Channels of the Behavior. 40
23 Ports of the Behavior. .. 40
24 Source-code Editor for the Behavior. .. 41
25 Evaluating Dependencies while Deleting a Behavior. 41
26 View Profiling Results.. 42
27 Allocating Processors for the Design.. 42
28 Mapping Behaviors to Processors. . .. 43
29 The Architecture Refinement Tool Introduces an Additional Level of Hierarchy. 43
30 Allocating Busses for the Design. . .. 44
31 Mapping of the Toplevel Channels. . .. 44
32 The Communication Refinement Tool Inserts Protocols and, if necessary, Transducers. . . . 45

Masterthesis of David Berner 1

1 Introduction

In 1965 Gordon Moore (co-founder of Intel) predicted that the transistor density of semiconductor chips
would double roughly every 18 months. In February 2001, Intel’s Chief Technology Officer Pat Gelsinger
pointed out in the opening speech of the International Solid State Circuit Conference (ISSCC) in San
Francisco that by the end of this decade processors will reach 1 TIPS (Tera Instructions Per Second) at 30
GHz. These processors will consist of about 10 billion transistors.

A current Intel Pentium III 1 GHz processor (codename coppermine) has about 28 million transistors,
two third of which actually represents the 256 kB on-die level 2 cache. The increase of designer productivity
measured in the number of processors designed has been only about 20% per year in the recent past. If we
project the same increase over the following nine years, in 2010 a processor would have less than 0.2 billion
transistors.

So how are we going to design the missing 9.8 billion transistors? Are we going to employ 50 times the
number of designers? Not likely. Certainly it is more desirable to increase the productivity of the designers
drastically. But how?

One possible answer is to use designs, that are highly modular and easily reusable in later generations of
products - IP-reuse. Another answer is to work at a higher level of abstraction.

1.1 System-level design

The highest level of abstraction is to perform synthesis directly from the system specifications. This approach
is called System Level Design (Figure 1). It means to write a system specification in a language as intuitive
as possible and to refine this specification down to the register transfer-level (RTL).

SpecC is a language (Section 2) and a methodology (Section 3) especially designed for system level design.
It’s basic concept is not the one-button-push solution, but an assisted refinement process. It defines several
level of refinement at each of which the designer is provided with information in order to help him taking
decisions for the next refinement step. After the last refinement step the design is at RTL and synthesizable.

1.2 Goal

In the SpecC refinement-process there are several tools involved (Profiler, Architecture Refinement Tool,
Communication Refinement tool, SpecC compiler, etc.), but the user only wants to have to deal with one. So
we wanted to create a graphical user-interface which integrates all tools and assists the designer during the
whole refinement-process - from specification to transistor-level.

It was clear that this is a big task and that it would take several man-years to accomplish it, so given
the actual time-constraints, we focused on the specification of the project and the choice of the tools and
environment. Then it was important to create a stable and open basic framework which demonstrates the
basic concepts and would be easily understandable and expandable.

1.3 Related Work

SpecC is quite unique and there is still done research, so there is nothing which closely relates to it. Sure
there are several other approaches to System Level Design such as System C or VCC, but their concepts are

Masterthesis of David Berner 2

Behavioral
Domain

Structural
Domain

Physical
Domain

System-level
Design

Mask

Module floorplan

Processor floorplan

System floorplan

FSM

Module

Processor

ALU

Leaf Cell

TransistorLogic

System
Description

Figure 1: System-level Design in the Y-Chart.

totally different.

The Toshiba Corporation has made a tool called VisualSpec which is a GUI for SpecC. VisualSpec incor-
porates some of the functionality mentioned above, but it is not at all what we were anticipating. This is why
we started with this project from the beginning and called it RESpecCT (Refinement and Exploration-tool for
the SpecC Technology).

Masterthesis of David Berner 3

2 The SpecC Language

SpecC is a language.
It is not a language grown over centuries in order to adapt to constructs people like to express - like most
of the human languages, nor has it been developed and then expanded and adapted to different applications
people may have - like most of the programming languages. SpecC is a language developed for one special
purpose: system level design.

The main properties of SpecC are that it has an easily understandable syntax for machines as well as for
humans, it includes all constructs needed to describe a design as inherent parts of the language and it can be
used to describe a design at all levels of development - from specification to register transfer level.

B e h a v i o r a l
H i e r a r c h y

S t r u c t u r a l
H i e r a r c h y

C o n c u r r e n c y

S y n c h r o n i z a t i o n

E x c e p t i o n
H a n d l i n g

T i m i n g

C J a v aV H D LV e r i l o g S p e c C h a r t s S p e c CS t a t e c h a r t s

S t a t e
T r a n s i t i o n s

n o t s u p p o r t e d p a r t l y s u p p o r t e d f u l l y s u p p o r t e d

Figure 2: Language Comparison [1].

2.1 C+Spec = SpecC

The reason for creating SpecC as a new language was because there was no such thing. SpecC was started an
a methodology (Section 3) and then Gajski and his group were looking for a language which could be used to
implement this design-flow best. Languages like C and Java are very well suited to write a functional model.
They have also the advantage, that many people know them so there is not much training necessary to get
people productive. On the other hand, these general purpose programming languages lack functionality when
it comes to the refinement. How am i going to describe e.g. parallelism in C? So if we want this to work,
we have to write additional libraries that add certain functionality to the language. This is possible, but it

Masterthesis of David Berner 4

gets somewhat inconsistent. System C e.g. takes this library-based approach. An advantage is that tools like
compiler, debugger and development environment already exist. On the other hand describing mechanisms
like timing and concurrency is not very intuitive by using a library. Also, a library based approach is easy to
expand. This can be seen as an advantage e.g if a company wants to adapt it closer to their application, but
since everyone keeps changing it that much, it is impossible to have a set of tools handling all the constructs
of the language.

An other approach is to take existent design languages like VHDL and Verilog and try to fit them into the
whole design process. This approach turns out to be difficult, too since these languages are just not made for
high level descriptions. A functional description of a system in VHDL would either be already mapped to
certain architectures or would require to expand VHDL which would result in a new language as well.

SpecC tries to incorporate the advantages of both worlds while excluding the drawbacks. It uses ANSI-C
as a basis which is well known, easily understandable and well suited for functional descriptions. It adds few
constructs for handling missing functionality for the design flow like concurrency and hierarchy (Section 2.2).
The choice of the added statements once done properly, it will be very hard to change, since the compiler and
all tools depend on it. This makes SpecC easily to standardize.

2.2 Special Features

SpecC adds only seven major mechanisms to C. These are :

� Behavioral hierarchy

� Structural hierarchy

� Concurrency

� Synchronization

� Exception handling

� Timing

� State Transitions

With the help of these mechanisms we are able to write a functional description of the design which can
then be successively refined to a cycle accurate description of the system. Details about particular constructs
can be found in the SpecC book [?]. There are also some small additions not mentioned here e.g. a true
boolean type. Details about those can be found in the SpecC Language Reference Manual [?].

2.3 Summary

The SpecC language was designed because there is no other language which fits - or can be fitted with
reasonable effort - into the SpecC methodology. It is executable on every stage of refinement, it is highly
modular because of the behavioral concept, supports design reuse and is complete in terms of supporting all
concepts currently used in embedded systems. All it’s concepts are organized orthogonally, which results in
a more or less minimal solution and makes the use of the concepts consistent. As ANSI-C is used as a basis,
is is easy to understand and to learn.

Masterthesis of David Berner 5

3 The SpecC Methodology

3.1 Overview

The SpecC methodology defines the process to get from a functional system specification to an imple-
mentation on register transfer level (RTL) which can be given to a fab in order to actually produce the
chip. The methodology comprises four system-description models and transformations between these
models (Figure 3). Following the transformations, the systems move from the specification model over the
architecture model and the communication model to the implementation model. Each model represents a
new level of refinement, introduces new concepts and properties into the design.

The main idea is to have a design with is simulateable at every stage of development and which - once
specified - does never have to be rewritten during the whole process, resulting in a failsafe and consistent
design.

M a n u f a c t u r i n g

C o m m u n i c a t i o n s y n t h e s i s

S y n t h e s i s f l o w

A r c h i t e c t u r e e x p l o r a t i o n

V a l i d a t i o n f l o w

C o m m u n i c a t i o n

m o d e l
S p e c i f i c a t i o n

A r c h i t e c t u r e
m o d e l

m o d e l

S i m u l a t i o n
m o d e l

E s t i m a t i o n

V a l i d a t i o n
A n a l y s i s

C o m p i l a t i o n

L i b r a r y
C o m p .

S i m u l a t i o n
m o d e l

E s t i m a t i o n

V a l i d a t i o n
A n a l y s i s

C o m p i l a t i o n

S i m u l a t i o n
m o d e l

E s t i m a t i o n

V a l i d a t i o n
A n a l y s i s

C o m p i l a t i o n

S i m u l a t i o n
m o d e l

E s t i m a t i o n

V a l i d a t i o n
A n a l y s i s

C o m p i l a t i o n

I n t e r f a c e s y n t h e s i s

I m p l e m e n t a t i o n

H a r d w a r e

s y n t h e s i s

S o f t w a r e

c o m p i l a t i o n L i b r a r y

B a c k e n d

C a p t u r e

m o d e l
I m p l e m e n t a t i o n

L i b r a r y

L i b r a r y
A l g .

R T L

A l l o c a t i o n

P a r t i t i o n i n g

S c h e d u l i n g

P r o t o c o l i n s e r t i o n

P r o t o c o l i n l i n i n g

P r o t o .

Figure 3: The SpecC Methodology [1]

Masterthesis of David Berner 6

3.2 Specification Model

The highest level of abstraction in system design is the functional description of the system. It describes the
whole system in detail but does not include implementation-details like timing or partitioning. While in theory
every functional description results in a valid design, it does not forcedly result in a ”good” implementation.
In order to get efficient results, one should stick to some simple rules in describing the functional model:

1. Separate communication and computation A basic idea in SpecC is to separate computation from com-
munication. This makes it easier afterwards to try different protocols without touching the computation
part. In SpecC the computation is specified in behaviors, whereas the communication is contained in
channels. Input and output of behaviors have to be specified explicitly in order to be able to evaluate
data dependencies.

2. Expose parallelism
Without knowing how many processors you will use in the design and of which kind they are, the spec-
ification model should expose as much natural parallelism as possible. Modeling behaviors in parallel
- if they are not dependent of each other - will give more space to optimizations during refinement. To
serialize behaviors which are modeled in parallel is not a complex task whereas to detect if a group of
serial modeled behaviors can be run in parallel is much more extensive.

3. Use hierarchy to reflect functionality
For every design of considerable size it is most important to structure it reasonably so the designer
can keep an overview over the whole project while being able to locate details in the design. A very
common and convenient way to do this is to use hierarchy. Now if the concept of hierarchies is used
wisely, the design stays both, easily understandable and easy to optimize and refine.

4. Choose proper granularity
Since the whole design is divided into behaviors, one question is then what to put in one behavior, and
where divide it into several. If the size of the behaviors is chosen too big, the refinement will not be
optimal. Since most optimizations are done on the behavior-level, the behaviors themselves remain
more or less untouched. If the size of the behaviors is chosen too small, the design complexity will be
high. As a hint, behaviors should always represent basic algorithmic blocks. This will leave enough
room for optimization while leaving the design complexity on a tolerable level.

5. Identify system states

Following these rules, the design will be suitable for refinement and will profit as much as possible from the
advantages of the SpecC methodology.

3.3 Architecture Exploration

Once the system is defined, the design gets into the refinement-phase. The first transformation is called
”architecture exploration” . It transfers the design from the specification level to the architecture level.

In the Architecture level, the architecture of the design is known. This means that the number and the
type of the processors is fixed. In addition one has already fixed what part of the design will be run on what
processor and in what order. To get to the architecture model there are basically three steps to be performed:

Masterthesis of David Berner 7

1. Allocation
During allocation the designer selects the number and type of processors to be used. To take these
decisions he has to evaluate the design in respect of size, speed, performance constraints, cost and
more. This data he can use in order to select processors from an IP-database where some additional
data is available.

2. Partitioning
Having decided which processors to use, one has to decide which part of the design will run on which
processor. This process is called partitioning or behavior-mapping. Again, this is no easy step. To
perform it, the designer needs information about what loads different parts of the design cause. Also
he wants to know how much memory the behaviors use. Very important is the communication of
behaviors with other parts of the design. It is not advisable e.g. to put parts of the design on different
processors which communicate a lot between each other. This would cause much traffic on the bus
which connects them and is usually unwanted. Only in very special cases one could want to do this in
order to avoid other problems.

3. Scheduling
If all behaviors have been mapped to processors, the order they execute is still to be fixed. This is easy
for behaviors which have already a serial decomposition, but can be hard for parallel and especially for
FSM-behaviors. With the scheduling there will be synchronization behaviors introduced. They manage
synchronization e.g. for originally parallel behaviors.

After architecture exploration we can make more accurate predictions about performance and cost. We
will know quite accurate execution-times since we know exactly the processor on which the code will run and
can make a very accurate simulation. On the Architecture Level there will be an additional level of hierarchy
which represents the components. Also there will be additional behaviors on this level synchronizing the
communication between these processors.

3.4 Communication Synthesis

Communication synthesis is the transformation from the architecture level to the communication level. While
on architecture level the communication between the components is still done in channels - which means that
it happens in no time (or predefined intervals) - on the communication level the processors communicate via
wires on a defined bus with a defined protocol. In order to perform the communication synthesis two steps
have to be accomplished:

1. Bus allocation
For the bus-allocation one has to select one ore more busses out of an IP-database. They have to be
selected considering parameters like bandwidth, bit-width, cost, overhead and the protocol.

2. Channel mapping
After selecting the busses, the top-level channels have to be assigned to the busses. If the communicat-
ing processors do not support the bus-protocol, there have to be inserted additional components which
take care of the conversion of the different protocols. We call them transducers.

In the communication model we have not only correct execution times of behaviors, but we have a cycle
accurate model of the communication part of the design. Simulation will now reveal all timing problems that
were still undetected in the design.

Masterthesis of David Berner 8

3.5 Summary

The SpecC Methodology is a design methodology specifically tailored for system level synthesis. It starts
with a functional system description of the design and will be transformed over several steps to a cycle
accurate design description ready for implementation. The critical decisions in the refinement process have
to be taken by a designer while straightforward - but still complex - refinement tasks are automated by tools.

This has the advantage that the design process is highly automated, but the designer still has the control
over the refinement process so the results are very efficient.

Masterthesis of David Berner 9

4 Specification

Before actually start working on a project, it is essential to specify as exactly as possible what one really
wants to have. At the very beginning it is not easy to specify the needs, also the specification has to be
reasonable in terms of resources like time and money.

In a first task-analysis we investigated what actually had to be done, then we set priorities to get an order
what had to be done first and what was less important. Then we refined the results of the task-analysis in
order to obtain a quite precise specification.

4.1 Edit

An evident property of RESpecCT should be to read designs of different formats, convert them to others
and write them out again. The user wants to be able to browse the hierarchy of the design, to get provided
with all kinds of information about the design as well as about parts of the design or about single behaviors.
We want the user to be able to add change and delete behaviors or properties of behaviors like variables,
channels and ports. Some of these actions may be quite complex, there may be numerous dependencies and
prerequisites. In these cases the user should be assisted through the whole process with wizards.

In addition to a graphical display there should also be support to directly edit the code for people who
want to do quick changes in the code without having to deal with the GUI. However, these changes should
be immediately reflected in the graphical representation in order to keep consistency between these two.

Apart of the hierarchical view, there should be a display of the connectivity inside behaviors. It could
look like a matrix with ports of the sub-behaviors over the connected variables, channels and ports. It will
be a sparse matrix with one connection per column. The user should be able to make or release connections
between items.

4.2 Project Management

A SpecC-design typically consists of several files. In order to keep the work organized, it is essential to be
able to define a projects which includes all files and keeps track of their location. Such a design project could
store additional information like descriptions and comments for the whole projects as well as for every file.
Since SIR-files are binary and thus not portable over platforms, it is important to always keep recent versions
of SpecC-files.

As soon as we start with the refinement, the projects get an additional meaning. It keeps files of all four
design-levels (Specification level, Architecture level, Communication level and Register Transfer Level)
in order to be able to go back in the design-process, change decisions and repeat already performed steps.
This is very important, since during refinement behaviors are added to the design (e.g. for synchronization)
and changes are made to the hierarchy without being able to undo this. The reason for this is, that different
specifications can theoretically end up in the same architecture-level design.

The file-management also should support the user to keep consistency throughout all design-levels.
RESpecCT throws a warning if the user tries to modify the design on a level other than the specification
level. If he does anyway, consistency between the different levels is no longer given. A correct simulation of
a higher level does then no longer mean that a lower level simulation of the design has to be correct. A big
advantage of the SpecC-methodology would be lost. The correct way to do changes in the design is to go

Masterthesis of David Berner 10

back to the specification level - without losing the information of previously takes decisions - perform the
changes and then redo the refinement.

Another job of the project-management is to keep options like selected weight-tables, profiling options
and the name of the top-level behavior.

4.3 Build

At each time of the design-process, SpecC makes sure, that the design is simulateable. In order to perform
simulation three steps are to be done: Compilation, Debugging and the actual Simulation.

4.3.1 Compiler

The compilation of the design converts the SpecC-code into an SIR data-structure, then converts it into C++
code which is then compiled into an executable. The SpecC-compiler should take care of all this.

4.3.2 Debugger

During the process of writing the specification of the design, it is very likely that the design is not correct
from the beginning. Therefore we have to provide a possibility to debug the design. Since it is actually the
C++-code not the SpecC-code which is complied, the actual line numbers reported by the debugger have to
be translated to the SpecC-line numbers. This should happen transparently so the user is not aware of that.

For more convenience it should be possible to set breakpoints in the code and to trace over it or step into
it.

4.3.3 Simulation

Running the actual simulation is pretty simple. The executable created by the compiler has to be executed.
However, it has to be made sure that there is a correct testbench around the design. Also the testbench could
require parameters which have to be provided and must be adjustable by the user. Last but not least, the
user wants to get feedback about the simulation in the interface. If an error occurs it could indicate a wrong
parameter or a bug in the testbench. Also the regular output of the simulation alone could be instructive.

4.4 Profiling, Estimation

The main purpose of profiling and estimation is to get information out of the design which helps in taking
further design-decisions e.g. about what processors to use, what memory-size will be needed, what busses
are suitable and to find out at a very early stage if the design fulfills certain constraints like price, speed or size.

Although these two mechanisms seem very similar in their goal, they do totally different things. This is
also due to the fact that they are performed at different stages of the design.

Profiling can be performed at the very beginning. As soon as there is a specification which is semantically
and syntactically correct and an executable testbench, one can run the profiler. Like this we are able to
examine certain properties of the design while it is still growing. Fundamental errors can be detected early
and taken care of, without wasting too much time and money.

Masterthesis of David Berner 11

The profiler inserts statements into the design which produce information about operations performed in
the design at simulation-time. After simulation it evaluates this information and makes it available. Profiling
information comprises operations, memory-usage and communication-intensity on a per-behavior basis. For
every behavior we got then a lot of information. There are 65 different operations two different categories for
memory and for communication (in and out). Every category is divided into the 29 different data types. This
makes 2001 pieces of information per behavior. In addition the profiler extracts some statistical metrics out
of it. All this information has to be available to the designer in the GUI in order to evaluate it. RESpecCT
should offer some general high-level metrics by default, but is able to deliver more specific information on
request.

The profiler also should support the mechanism of weight-tables. Weight tables are used to reflect
properties of the the actual architecture better in the results of the profiling. For example if the processor
we anticipate to use has a very slow multiplication-unit, multiplication-operations will be counted e.g.
three times, whereas additions are counted only once. Then, if the profiling counts 3 multiplications and 3
additions for a certain behavior, the number of total operations would be 12. This kind of information is
stored in a weight table. It makes the profiling produce more accurate results if we want to add up different
kinds of operations.

Estimation is a mechanism which can be used only after architecture exploration. While the profiler does
a dynamic analysis of the code, the estimator does only a static analysis. Together with the data from the
profiler and the results of the architecture exploration, it can provide more accurate values than the profiler.
Also you get absolute information about time of execution, while profiling only provides relative information
about speed and performance.

Profiler as well as Estimator are separate tools written in C++. They have to be integrated into RESpecCT
as a shared library. The data-exchange should be done entirely within the SIR-datastructure.

The sensitive point about profiling and estimation is to extract the right judgments out of the whole bunch
of information they provide. In order to optimize that, we have to develop clear and intuitive displays.
Displays which can display a lot of information at a time while emphasizing on the critical points. Since
there is never one display that can show all aspects, there have to be several which complement each other.

These displays could be:

� Columns in the behavior tree

� Pie chart

� Bar chart

� Table

4.5 Architecture exploration

As we already know, architecture exploration is the process of mapping the specification model to a certain
architecture. This includes insertion of components, and the synchronization between these.

Masterthesis of David Berner 12

4.5.1 Allocation

The first step in the process of architecture exploration - consists of selecting one or several processors from
a database. In order to provide the user a basis of comparison, we have to list the processors with some short
description as well as some details like performance, clock, area and cost.

Also we should be able to add and remove processors at any time. One processor can be selected several
times for same design, so the user has to assign them unique names.

4.5.2 Partitioning

During this phase the behaviors get mapped to the processors allocated. It is a quite critical step of the
refinement-process and has to be done carefully. There are some simple rules to respect. For example one
will always try to separate two blocks which are as independent as possible. One should always try to leave
behaviors together which communicate heavily with each other.

Also it can be advisable to separate behaviors which mainly perform the same kind of operations. If there
is a group of behaviors which seem to use mainly 32 bit multiplications, we could try to map them together
to a processor which is optimized for that.

After partitioning is completed - which means all behaviors except the ones belonging to the testbench
are mapped to a processor - one can run the architecture refinement tool. It will reorganize the hierarchy,
introduce a new level of hierarchy representing the processors and add behaviors which manage the synchro-
nization between the processors.

4.5.3 Scheduling

Only after partitioning is completed and the refinement-tool has processed the data-structure, we can start to
do the scheduling. Scheduling means to assign an order to the behaviors on each processor. This is easy for a
serial behavior, but can be critical for parallel or other behaviors e.g. FSM. There the user has to be aware of
the dependencies between the behaviors and be able to interpret them correctly. The user can also ”fl atten”
parts of the hierarchy, that means do the scheduling not only of one level, but include behaviors from lower
levels.

Though the GUI will display the scheduling decisions, the change in the data-structure will not be per-
formed unless the user actually runs the refinement-tool again. After this step, there will be no more serial
structures inside one processor. The design is now on the level of the Architecture model.

4.6 Communication synthesis

To get from the architecture model to the communication model, we have to do the communication synthe-
sis. The procedure resembles the architecture refinement: First, there has to be done allocation, then mapping.

Allocation means basically to select the busses one wants to use in the design out of a database and give
them a unique name. Like in the architecture refinement, there should be displayed some data with the busses
like bits/sec, frequency or number of bits in order to let the user make a conscious choice, even if he is not
familiar with all the busses.

For the mapping, all top-level channels have to be assigned to a bus. A top-level channel is a channel over
which the processors communicate. There may be a lot of other channels in the design, but since usually

Masterthesis of David Berner 13

there are no busses inside of components, we do not have to worry about them. All the channels have to be
mapped to a bus, and to every allocated bus has to be assigned at least one channel.

Once the mapping is completed, the communication refinement-tool can be called. It will again change
the structure of the SIR. There will be suitable protocols inserted for the busses and the top-level channels
will be converted into actual bus-wires. These will be represented as variables.

4.7 Summary

This chapter illustrates how much work is involved in the project and how a first version could look like. Even
after all this has been implemented, one could think of a whole bunch of other functions, not mentioned so far.

To get the project started, we had to define a priority-list what the first implementation would look like and
what will be targeted in the further development. Given the initial time-restriction of six months including
the preparation-phase, we decided to concentrate on a basic framework. There we should integrate the SIR
and prove it’s usability. We should provide the basic widgets, show how to integrate an external module and
how to run external tools. Also a reasonable documentation of both, the functionality and the code should be
part of it.

Once this is done solidly, it should be relatively easy for someone else to continue the project by just
using the concepts demonstrated in the first stage. Other modules can be integrated just in the same manner
and if there is the need, widgets can be extended.

Stage 1 consists of the following tasks:

� Display the behavior-hierarchy and browse it

� Edit source code

� Show how to display and edit properties of behaviors (channels, variables, ports)

� Show how to run external tools (like compilation and simulation)

� Show how to integrate external modules like the profiler

� Create different widgets for displaying data (e.g. profiling results and make them easily usable)

Then in a second step, the following issues should be done:

� Allocation

� Map behaviors

� Run architecture refinement tool

� Schedule behaviors

� Allocate busses

� Map busses

Masterthesis of David Berner 14

� Run communication refinement tool

� Run estimator

� Display estimation results

� Add and remove behaviors

� Add and remove properties (channels, variables, ports)

� Make project-integration

It is obvious, that list is not complete. But it is enough to get an idea of what RESpecCT could look like
in the future.

Masterthesis of David Berner 15

5 Choosing the Tools

Once the project is specified, we are to choose the tools which fit best for the anticipated task.
Since the SIR-library was written in C++ and C++ is an object-oriented language which is widely used,
writing the GUI in C++ seemed to be the natural choice. Java would have been an alternative, but it would
have added a lot of additional work and no real benefit except the native cross-platform-support. As there are
a considerable number of usable graphical toolkits for C++, even for cross-platform development, we quit
Java.

5.1 Different GUI Toolkits

The term toolkit in this document means a library for the development of graphical user interfaces (GUI).
Since ANSI C does not include any windows-library by itself, it is essential to use a toolkit for the
development of a windowed application with C or C++.

As mentioned there are quite a few graphical toolkits available for C++. We will give a quick overview of
the most important ones. The Criteria under which we looked at the toolkits were (sorted by importance):

� Portability They must at least be available under Unix and Windows.

� Completeness

� Usability

� Documentation

� Number of users

� Look and feel

� Price

Toolkits which get clearly disqualified by one ore more of the criteria are not listed unless we consider them
generally important.

� Microsoft Foundation Classes (MFC)
MFC are the leader in the Windows-world. They are very complete, quite convenient to use, good
documented and there are a lot’s of people using it.

MFC is commercial, and ships with the Microsoft Visual C++. Although this already costs money, it
only provides Microsoft Windows support. A Unix-version of the library has to be purchased separately
and is very expensive.

� Gnome
Free, native support for X11
No support for windows

� QT
Very good and complete. Free (GPL) version for Unix, commercial version for MS Windows. Very
good documentation, professional support. Graphical widget-designer available.

The MS-windows version is quite expensive.

Masterthesis of David Berner 16

� wxWindows (gtk+)
based on gtk+. Very nice and complete. Free (GPL). Good support for both, Unix and MS Windows.
Graphical widget-designer available for $50.

Documentation not complete. Widget-designer instable.

� VDK (gtk+)
Good widget-set based on gtk+. Nice, not too stable widget-designer. Available only for Unix.

� tcl/tk
A wide range of widgets available. Widely used.

Not object-oriented, widgets look not very beautiful (old fashioned), no C++.

– [incrTcl]
Object-oriented Wrapper for Tcl.

– tkinter
Python -Wrapper for Tcl. Object-oriented, good documented. No C++

� gtk +
Nice and complete widget-set. Only C, no C++.

� Visual Component Library (Borland VCL)
No Unix-support

5.2 QT versus wxWindows

After examining a lot of toolkits, installing and trying some, surfing the web for information, reading related
newsgroups and discussions, we came to the decision, that there are in fact only two toolkits to choose from:
wxWindows and QT. Table 1 shows a close-up comparison between these two:

Criteria QT wxWindows
Portability ++(MS Windows, Unix, Linux) ++ (MS Windows, Unix, Linux, Macintosh)
Price - ($2925) ++ (free, designer for $50)
Documentation ++ examples, tutorial +
Completeness ++ +
Usability + +
Number of users ++ o
Look and feel ++ +

Table 1: Comparison of QT and wxWindows

Even though wxWindows and QT seem both to be a good choice, the table shows that QT leads the
comparison in almost all categories. We came to the conclusion, that even though QT has a considerable
price, it is probably cheaper to develop in QT than in wxWindows. Also the professional support and a large
user-community, gave us confidence to choose QT.

Masterthesis of David Berner 17

5.3 PyQt

Having selecting QT as the toolkit of our choice, we realized that there is also Python bindings for QT.
Having known Python already as a very powerful language for developing scientific applications, we decided
this needed further investigation. PyQt revealed itself as a free python wrapper for the QT-library.

5.3.1 Advantages

� Price
A C++ QT License for both Unix and MS Windows from Trolltech is today $2925. This includes one
year support and free upgrades. Every additional year of support and upgrades is $910.
PyQt is free for Unix as well as for MS Windows. Although it looks there may be charges for the
Windows-version in the future, these will be insignificant in comparison to the C++ license.

� Speed of Development
Anyone who has ever developed a program of considerable complexity in Python may have been
amazed how fast the project was advancing. In comparison to C++ (or to any programming-languages
we know) the syntax of Python is much clearer. Indentation is a syntax element, so the source code is
a lot easier to read - this is especially helpful if one tries to understand what one has done a couple of
weeks ago.
This in conjunction with the fact that major changes in the program structure - which unfortunately
occur especially in the beginning of application development - makes Python a very handy Rapid Ap-
plication Development (RAD) -Tool. As the syntax - though a lot simpler - is very near to C++, one
has always the option to rewrite the project in C++ once it reaches a more mature level.

� Scripting-Interface for the SIR-Library
Developing RESpecCT in PyQt seems to be very promising. There is an apparent additional effort
though: SIR is currently only available in C++, so we would have to develop SIR for Python. Since
a fast and easy scripting interface to SIR is very desirable anyway, we would kill two birds with one
stone. The additional amount of work at the beginning would give us a scripting interface almost for
free. Even if we would later decide to switch to C++ development we will still have the scripting
interface.

5.3.2 A small example

In order to get a better impression how powerful QT is in combination with Python, we show a small
example-script:

import sys , qt # load modules
2 a = qt .QApplication(sys .argv) # instantiate QApplication

w = qt .QWidget() # instantiate QWidget
4 w. resize (200,120) # resize QWidget

quit = qt .QPushButton(”Pushme”,w) # instantiate button
6 quit .move(62,40) # move the button

connect the signal ” clicked ” of the button with the method ” quit ” of the widget
8 w.connect(quit , qt .SIGNAL(”clicked()”),a , qt .SLOT(”quit()”))

a .setMainWidget(w) # w is mainwidget of the application
10 w.show() # show w modal

a . exec loop () # start the application

Masterthesis of David Berner 18

Figure 4: The small example-application.

This script pops up a little window with a button (Figure 4). If the user clicks on the button the application
exits. Although this is a quite minimal example, it shows how easy and intuitive the code can be read. For an
advanced PyQt-programmer, the code is as readable as the comments in this example.

Masterthesis of David Berner 19

6 SIR Wrapper

6.1 What is SIR

SIR stands for SpecC Internal Representation. It is the common data-structure used to store all language-
constructs written in SpecC. The idea is that all tools use this data-structure, so they can easily exchange
information between each other.

A clear and consistent data-structure also makes it easier to the tools to perform the individual refinement
steps. Since a great advantage of SpecC is the consistency in all levels of the design process as well as the
ability to simulate at every stage, the underlying data-structure is of great importance.

SIR is the data-structure which has been developed by Rainer Dömer at the CECS, and it fulfills the
requirements well. Since there are a lot of functions and methods in SIR which are not needed to be accessed
externally or which should never be used if not internally, SIR is divided into two levels.

SIR Level 1 contains all classes, methods functions and variables which are strictly for internal use (see
Figure 5). SIR Level 2 consists of all classes and functions which should be used by tools. Level 2 allows to
perform actions at a much higher abstraction-level (see Figure 6).

6.1.1 Example: SIR Behavior

As it may seem obvious, there are classes strictly dedicated to Level 1, like e.g. SIR Member. Someone who
wants to write a tool using the SIR does not even have to know about this class. Most of the classes however
have a Level 1 part as well as a Level 2 part. There are no such classes without a Level 1 interface.

SIR Behavior is an example for such a class. It’s definition is listed in Appendix C.1, it’s interface-file is
listed in Appendix C.2. As we can see, the two files are quite similar, however there are differences. How
and why these changes were performed is explained in Section 6.4

6.2 SWIG

As RESpecCT covers the whole refinement-process it seems to be a very thorough test-application for such
a data-structure. Remains the problem, that the SIR currently only exists as a C++-library. The decision was
made - on the other hand - to develop RESpecCT in Python.
Further research on this problem reveals, that there are three possible solutions:

1. Rewrite SIR in Python.
This approach would be very time consuming though very easy to integrate into the application after-
wards. Although it would be possible to implement just the subset of the SIR currently needed in the
GUI, we do not go for this solution because you would have to maintain both versions of SIR and make
sure they really produce the same SpecC-Code.

2. Wrap all the classes methods and functions of SIR in Python-classes, -methods and -functions.
Doing this has the advantage, that there is only one SIR, so if some internals change the wrapper does
not have to be updated (unless the API is not affected). But still, this would involve a lot of work,
probably more than rewriting it completely and it would be difficult to build a clean and consistent
interface like that.

Masterthesis of David Berner 20

S I R _ D e s i g n

S I R _ F i l e L i s t

S I R _ T y p e s

S I R _ S y m b o l s

S I R _ N o t e s

S I R _ F i l e I n f o

S I R _ I m p o r t

S I R _ T y p e

S I R _ T y p e P t r s

S I R _ T y p e P t r

S I R _ U s e r T y p e s

S I R _ S y m b o l

S I R _ N o t e

S I R _ C o n s t a n t

S I R _ I n i t i a l i z e r

S I R _ P a r a m e t e r s

S I R _ S y m b o l s . . .

S I R _ L a b e l s

S I R _ S t a t e m e n t

S I R _ S y m b o l P t r s

S I R _ N o t e s

. . .

S I R _ C o n s t a n t

S I R _ I n i t i a l i z e r

. . .

S I R _ P a r a m e t e r

. . .

S I R _ L a b e l

S I R _ N o t e s

. . .

S I R _ S y m b o l P t r

S I R _ U s e r T y p e

S I R _ M e m b e r s

S I R _ M e m b e r

S I R _ S y m b o l s

. . .

S I R _ N o t e s

. . .

S I R _ C o n s t a n t

S I R _ E x p r e s s i o n

S I R _ S t a t e m e n t

. . .

S I R _ S y m b o l s

. . .

S I R _ S t a t e m e n t s

S I R _ S t a t e m e n t

. . .

S I R _ S y m b o l P t r s

. . .

S I R _ E x c e p t i o n s

S I R _ C o n s t r a i n t s

S I R _ E x c e p t i o n

S I R _ T r a n s i t i o n s

S I R _ T r a n s i t i o n

S I R _ C o n s t r a i n t

S I R _ E x p r e s s i o n

. . .

S I R _ S y m b o l P t r s

S I R _ S t a t e m e n t

. . .

. . .

S I R _ C o n s t a n t

S I R _ S t a t e m e n t

S I R _ P o r t M a p s

S I R _ P o r t M a p

S I R _ B i t S l i c e s

S I R _ B i t S l i c e

S I R _ I m p o r t L i s t

S I R _ I n i t i a l s

. . .

S I R _ E x p r e s s i o n s

S I R _ E x p r e s s i o n

. . .

S I R _ E x p r e s s i o n

S I R _ C o n s t a n t

Figure 5: SIR Level 1 [3]

Masterthesis of David Berner 21

S I R _ D e s i g n

S I R _ B e h a v i o r s

S I R _ B e h a v i o r

S I R _ C h n l I n s t s

S I R _ B h v r I n s t s

S I R _ C h n l I n s t

S I R _ B h v r I n s t

S I R _ C h a n n e l s

S I R _ C h a n n e l

S I R _ P o r t V a r s

S I R _ P o r t s

S I R _ I m p l I f s

S I R _ P o r t

S I R _ P o r t V a r

S I R _ I m p l I f

. . .

. . .

S I R _ V a r i a b l e s

S I R _ F u n c t i o n s

S I R _ C h n l I n s t s

S I R _ B h v r I n s t s

S I R _ C h n l I n s t

S I R _ B h v r I n s t

S I R _ P o r t V a r s

S I R _ P o r t s

S I R _ I m p l I f s

S I R _ P o r t

S I R _ P o r t V a r

S I R _ I m p l I f

. . .

. . .

S I R _ V a r i a b l e s

S I R _ F u n c t i o n s

. . .

S I R _ F u n c t i o n s

S I R _ I n t e r f a c e s

S I R _ I n t e r f a c e

S I R _ V a r i a b l e s

S I R _ V a r i a b l e

S I R _ F u n c t i o n s

S I R _ F u n c t i o n

S I R _ A r g u m e n t s

S I R _ A r g u m e n t

S I R _ A r g V a r s

S I R _ A r g V a r

. . .

S I R _ V a r i a b l e s

S I R _ C h a n n e l

Figure 6: SIR Level 2 [3]

Masterthesis of David Berner 22

3. Use a tool like SWIG to automate the generation of the wrapper as much as possible.
Since this is the approach with the least programming effort involved, it is the most flexible one and
the easiest to maintain. Though the interface-generator cannot reflect the library perfectly, it should be
possible to do special adjustments by hand.

Therefore SWIG was the choice. It is a quite advanced tool and there are over 400 pages of documentation
on the web. The general workflow is the following:

1. Write an interface-file

2. Run SWIG on the interface-file and generate a C wrapper-file and a python shadow-wrapper

3. Compile the wrapper-file to an object-file (e.g. with gcc)

4. Link the generated object-file against the SIR-library into a shared library

6.3 Creating SWIG-Interface-files

Creating the interface-files is the first and most important task using SWIG. The common procedure is to
make a copy of the header-file of the class one wants to wrap and perform certain modifications on it. In this
header-file one has to specify the name of the module e.g.:

% module definition

and the names files one wants to include (since SWIG does not follow normal ”#include” -statements)
plus the name of the original header-file:

%f

2 #include ” Global.h”
#include ” IntRep/Symbol.h”

4 #include ” IntRep/ Definition .h”
%g

Now we have created a correct module-file. If we save it as ”modulename.i” , we can run SWIG on it.
Usually, however, one does not stop here. Since we don’ t want SIR Level 1 - methods to be used, there is
no point in making them available in Python through the wrapper. The next step will be to remove all Level
1-methods. In order to put everything together, after we have created all interface-files, we create another one
called sir.i which includes other interface-files. Like this, there will be only one Python-module produced,
containing the whole Level 2 SIR.

6.4 Modifications and problems

This is the theory. This is how one wishes it to be - and perhaps in a couple of years we come to that point.
Reality, however is different. We knew there were still some constructs in C++ SWIG can not handle. Some
are likely to be solved in the near future, some are of a more general nature. Templates are one mechanism
SWIG can not handle. Especially template-classes. With this we had to deal somehow, since most of the
classes in SWIG are inherited either from SIR List or SIR ListItem which both are template-classes.

Masterthesis of David Berner 23

6.4.1 Templates

This issue - though annoying - revealed itself solvable since we don’ t create new types of SIR List and
SIR ListItem. The only thing we would have to do, is to remove the inheritance-statement in the affected
classes and insert method-prototypes which otherwise would be extracted from the template-class. For
SIR Behaviors the declaration in the header-file looks like this:

class SIR Behaviors : /� behavior classes list �/
2 public SIR List<SIR Behavior> /� is inherited from SIR List (Template�class) �/

f

4 public :
(...)

In the interface-file the inheritance is removed and replaced with method-prototypes:

class SIR Behaviors /� behavior classes list �/
2 f

public :
4

bool Empty(void); /� test for empty list ? �/
6 unsigned int NumElements(void); /� number of list elements �/

SIR Behavior � First (void); /� first element (NULL if empty) �/
8 SIR Behavior �Last(void); /� last element (NULL if empty) �/

SIR Behavior �Previous(void); /� previous element (NULL if none) �/
10 SIR Behavior �Curr(void); /� current element (NULL if none) �/

SIR Behavior �Next(void); /� next element (NULL if none) �/
12 SIR Behavior �Prepend(SIR Behavior �Elem);

SIR Behavior �Append(SIR Behavior �Elem);
14 SIR Behavior � InsertBefore (SIR Behavior �Elem,SIRn Behavior �Succ);

SIR Behavior � InsertAfter (SIR Behavior �Elem,SIRn Behavior �Pred);
16 SIR Behavior �Remove(SIR Behavior �Elem);

SIR Behaviors �Concat(SIR Behaviors �Appendix);
18 SIR Behaviors �Precat (SIR Behaviors �Prependix);

(...)

The template will now not be visible any more from Python, but since the Python-module will be linked
against the SIR-library, the template is called implicitly because in the C++-compiler does exactly the same
as we did manually.

This issue successfully solved, there still remains a lot work to be done in modifying all those interface-
files. Since the procedure is very straightforward, we decided to automate this process. We wrote then a
Python-script which takes a header-file, inserts the ”module” and ” import” -statements, examines it for the
template-classes and inserts the method-prototypes of the appropriate types. This effort turned out to be
very worthwhile since a change in the header files just requires a regeneration of the interface-files in order
to be correctly reflected in the python-wrapper. A very simple change in the header of the template-classes
could otherwise require some hours of editing the interface-files. The Python-script for the automatic
interface-generation in included in the appendix (Appendix C.3)

Masterthesis of David Berner 24

6.4.2 Typedefs

Another problem are typedefs. SWIG does understand typedefs, but is does not reflect them entirely. In
the SIR-library there are often typedefs used like ” typedef class SIR Behavior sir behavior” . Then there
are methods returning values like: ” sir behavior *Copy(const char *Name, BOOL Strip=False);” . Python
will not create a wrapped object around the returned pointer and will throw a TypeError or AttributeError
using it. This can be solved, by changing the method-prototype to ”SIR Behavior *Copy(const char *Name,
BOOL Strip=False);” . In this case, Python will recognize the returned value as a pointer to a SIR Behavior
and wrap it correctly. Now this is fixed very fast, but there are a lot of methods where this problem occurs, so
again it is a lot of work changing it manually. So far we could not automate it though, since it is not a trivial
adaption. The class ”SIR PortMap” e.g. has a capital letter inside, so there is no simple rule to perform
the transformation from ”sir portmap” . Perhaps we will consider to make these changes directly in the SIR
header-files, since the changes would not break any other code.

6.4.3 Pointer to Pointer

After considering all of this, one can use the Python-wrapper and it works well. Only while using it, one will
encounter further issues which require some attention. In C and C++ a method or function only can return
one value. If one wants to return several one can think of introducing an intermediate STRUCT holding all
of the return-values and return it. This can sometimes make sense, but can also produce confusing code. The
other possibility is to return supplementary values through arguments. The arguments have to be pointer to a
pointer. The called method assigns them a value and like this the caller can use the value by dereferencing his
argument. This has the advantage to produce code which looks simpler, but depending on the situation it can
also be more difficult to read since the information-flow is not obvious any more. In SIR the latter method is
used deliberately. Python has no pointers, only references. The conversion between references and pointers
is done implicitly. Therefore, creating a pointer to a pointer is not possible. This makes it impossible to call
such methods directly from within Python.

The solution is to add methods to the C++-interface-files which take no pointers to pointers as arguments.
These methods call the corresponding methods and return whatever value one wants. It is obvious, that this
can not be done easily in an automated way - and this means work. Also it has to be adapted every time the
interface changes. In addition, since there is only one return-value, sometimes there have to be added several
functions in order to wrap one method with more than one argument. This is the approach we took so far. It
has the huge disadvantage, that we lose consistency between the two languages. Before, the documentation
for the SIR-library had perfectly covered the Python-wrapper. Since we have introduced supplementary
functions, this is no longer the case. The changes have to be documented separately.

6.4.4 Function Overloading

Function and method-overloading is a very common and convenient concept in C++. However there is no
correspondent for this concept in python. SWIG handles this problem by ignoring all multiple declared
functions and methods except the first one encountered. This is a very simple way and apparently it provoke
missing functionality. One way in making methods available to python is to add methods with a different
name in the C wrapper-code which call the overloaded functions/methods. This is very simple to perform
(could be even done automatically) but results in inconsistencies with the C++-interface.

A way to avoid this is to add methods to the python-wrapper, which check the types (and number) of
the arguments and call the (previously renamed) appropriate C++-methods. This is a bit more work, but

Masterthesis of David Berner 25

afterwards the interface stays the same. The Python method can be called like the overloaded C++-method.

In the current status we made only those methods available which are actually used. Only when it was
really necessary we implemented C++-accessor methods. The approach with Python type-checking and the
wrapper-method mentioned above is desirable to be used in a more advanced state of the Application.

6.4.5 Other Issues

Besides the problems discussed above, there still remain a couple issues. Some advanced C++-features like
friend classes, nested classes, operator overloading and namespaces, SWIG is currently unable to translate.
We did not have to worry about these since they are not exposed in the SIR-Interface.
An issue we actually have sometimes to deal with are exotic data-types like ” long long” or ” long double” and
advanced typedefs like ” typedef ERROR (*sir bhvr fct)(sir behavior*, void*);” . For problems like these we
have to decide individually how to handle them.

6.5 Compilation

6.5.1 Unix

The compilation under Unix follows three basic steps:

1. Generate C-Wrapper with SWIG

swig �c++ �shadow �python $(MODULE).i

This runs SWIG on the interface file. The option ”c++” tells SWIG that is has to deal with C++ code,
otherwise it assumes there is C code. ” -python means that we want to generate a python module.
” -shadow” means that SWIG should generate python shadow classes which correspond to the C++-
classes. If this option is omitted, the python interface is ”fl at” , without hierarchy. In this case we would
have several hundred static functions which operate the underlying C++-objects. To have shadow-
classes is very convenient, since the library can be used in the same manner as it would be used from
C++.

2. Compile the Wrapper

c++ �fpic �fpermissive �c $(MODULE) wrap.c $(INCLUDE PATH)

When compiling the wrapper into an object we have to make sure, that all original SIR header files are
in the include path. The option ” -fpic” is needed since we want to create a shared library. It makes the
compiler produce position-independent code. The option ” -fpermissive” is needed with newer versions
of gcc since SWIG generates apparently not 100% ANSII-C conform code. This option causes the
compiler to be less restrictive and throw warnings instead of errors for certain constructs.

3. Link it into a Shared Library

c++ �shared �fpic $(MODULE) wrap.o $(LIBS) �o $(MODULE)cmodule.so

Linking into a shared library can be painful, but with the right compiler-version (we use gcc.2.95.2)
and the right options it usually works. The flag ”-shared” signals the compiler to produce a shared
library. We have to include our just created object, the compiled SIR-library (position independent)
and the python library.

Masterthesis of David Berner 26

6.5.2 Windows

In the windows-environment, shared libraries are called DLL’s. Generating these is comparatively more
complicated. It gets even more complicated because of the fact, that C++-SIR does currently not compile
with Visual C++. Therefore we use gcc under cygwin. It makes no sense to explain the build-process in
detail here, here a listing of the commands to get an impression of how it works:

swig �c++ �shadow �python sir. i
2

compile the library
4 c++ �fpermissive �c sir wrap .c $(INCLUDE PATH)

6 # generate the dll :
gcc �s �Wl,��base�file,sir.base python20. dll sir wrap .o $(SIROBJS) n

8 �lstdc++ �mdll �o sirc. dll �Wl,�e, sirc init FPvUlT0@12

10 # generate the . def�file
dlltool ��base�file sir .base ��output�def sir . def ��export�all�symbols ��dllname sirc.dll sir wrap.o

12

generate the . exp�file
14 dlltool ��base�file sir .base ��def sir . def ��output�exp sir.exp ��dllname sirc. dll

16 # regenerate the dll :
gcc �s �Wl,��base�file,sir.base sir .exp python20. dll sir wrap .o $(SIROBJS) n

18 �lstdc++ �mdll �o sirc. dll �Wl,�e, sirc init FPvUlT0@12

20 # repeat . exp�file�generation:
dlltool ��base�file sir .base ��def sir . def ��output�exp sir.exp ��dllname sirc. dll

22

final dll�generation:
24 gcc �s sir .exp python20. dll sir wrap .o $(SIROBJS) n

�lstdc++ �mdll �o sirc. dll �Wl,�e, sirc init FPvUlT0@12

6.6 Summary

If we consider the amount of work and maintenance it would take to rewrite SIR in Python or to manually
wrap it, SWIG is a very convenient and helpful tool. But there is no magic involved, so there are still quite a
lot of steps to go through until one obtains a conveniently usable wrapper.

Once this is done we have SIR completely accessible through python with almost the same API than
the C++-version – which is not only useful for RESpecCT but also represents a light, fast and platform-
independent scripting-interface which can be used to implement small tools using SIR quickly.

If at some point it may seem desirable to have a perl or a Tcl/Tk -interface to SIR, SWIG can generate
those from the same interface-files with only slight changes.

Masterthesis of David Berner 27

7 Implementation

This chapter will describe shortly the implementation of each element in the application. Is covers design
decisions made and wants to give some background on user-interface design [4]. It is a quick overview of
how RESpecCT is built and what structure is behind.

We will discuss some general concepts as well as specific classes and where they are derived from. In
order to understand this fully one needs some knowledge of the QT-library which is intensely used. The QT-
classes are not further described, please refer to the official QT-Documentation ([5] or [6]). All QT-Classes
start with a capital ”Q” followed by a descriptive name like ”QWidget” .

Figure 7: The RESpecCT Main Window

7.1 First Steps

Once we have a Python-version of SIR we can actually start implementing the actual application. So what
do we need? And in which order?

The first element used is a Main-Window with a toolbar, a menu and a statusbar. Then we have to integrate

Masterthesis of David Berner 28

some tree-view to display the behavior-hierarchy. Once we got that tree-view, we can start using the SIR-
module and continue expanding.

7.2 The Main Window

Figure 7 shows the RESpecCT main-window. It is based on a QMainWindow with a menubar, a statusbar and
several detachable toolbars. All of those components can be hidden in order to maximize the workspace. To
organize the workspace we put a horizontal QSplitter in the middle. It separates the workspace into two parts
at a predefined position, this position can be moved by the user by simply dragging it to the left or to the right.
The left side will be reserved for the behavior-tree, in the right side we put a QWorkspace. The QWorkspace
can be used as an MDI Workspace which means that one can open a random number of child-windows inside
the workspace. They can deliberately moved within the workspace, but always stay inside. The user can
resize them, tile them (resize all windows so they fit together in the Workspace) and cascade them (resize all
windows to the same size and put them one behind the other).

7.2.1 Behavior Tree

The behavior-tree class is called SC tree. It inherits from QListView. It adds methods for filling itself
from an SIR-Design, column management, behavior-mapping and some more. When filling itself from a
SIR Design it just creates the toplevel-item, the rest of the design is read recursively from within the items.

The class for the list-items is called SC item. Obviously it is inherited from QListViewItem. It’s
constructor takes a SIR Instance and creates his immediate children. Each item checks his own type and
automatically uses the according icon. There are different icons for behaviors of type serial, parallel, leaf,
FSM and other. Each SC item keeps a reference to his SIR Instance and SIR Behavior. In addition to that
there is a dictionary in SC tree which holds key-value-pairs of the type ”SC item:SIR Behavior” . This may
seem redundant information but is due to the current characteristics of PyQt. Every QT-Object is actually a
C++ object. Every time the QT-code returns an instance to python, it is automatically wrapped into a Python
wrapper-object. As long as we don’ t subclass the QT-object there is no problem, but if it is sub-classed, there
is. Python’s memory management automatically garbage-collects any object which is no longer referenced in
the code. In the case of the tree, only the QListview would hold a pointer to its items, which is in C++. The
python wrapper object would be deleted as soon as it gets out of scope in the Python-code. Any operation
on the SC tree which returns an item would then return a QListViewItem which is no longer wrapped in an
SC item, the Python wrapper-object, since that has been deleted.

To prevent this, we have to keep a reference to the python object (SC item) in the application. Then the
python-object is not deleted since its reference count is still positive. The SC tree-operations will now return
items of the sub-classed type since the wrapper-object persists.

Often it is convenient to keep references to all objects somewhere, but if one forgets it, there can occur
very strange errors. After discussing this issue in the PyQt-mailinglist, we agreed that it would be convenient
if PyQt kept references to the sub-classed objects transparently. Thus, in the next release of PyQt (version
2.3) there will be no longer a need to think of this.

7.2.2 MDI Workspace

MDI means Multi Document Interface. In modern desktop applications it is a common concept which allows
the user to open multiple documents or - more generally speaking - child-windows and let him move them

Masterthesis of David Berner 29

Figure 8: MDI Workspace

around deliberately while still keeping them in the main application-window. This is designed in order to let
the user freedom in configuring and adapting the user-interface to his needs and habits, while preventing to
let the GUI interfere too much with other applications.

The MDI-workspace of RESpecCT is shown in Figure 8. In the RESpecCT MDI-workspace one can
do code editing, compare different profiling-charts, view and edit properties of behaviors and perform other
refinement-steps at the same time. The danger with MDI is that one loses track of all open windows and that
windows get hidden behind others. On the other if the user uses it wisely it can be a powerful tool. We think
that the advantage in productivity is so big that it is worth taking the risk of losing track of the open windows.

7.3 Code Editor

RESpecCT - Refinement and Exploration tool for the SpecC Technology - is not an IDE. The name should
make this clear. There are, on the other hand, several reasons which make a code-editor essential:

Masterthesis of David Berner 30

Figure 9: Code Editor.

� During refinement it is often necessary to edit the code and make small modifications.

� A more advanced SpecC-user will be faster to make certain changes directly in the code than rather
using the user-interface.

� Not all modifications of the source code can be performed through the user interface. FSM-behaviors
e.g. have to be treated very individually.

� For educative purposes or for testing it can be instructive to take a look at the source code in order to
understand how the code evolves.

For all these reasons it was important to include a code editor from the start.
The editor integrated right now (Figure 9) is very basic. It is a QMultilineEdit-widget with some small
enhancements for loading, saving and cut & paste. For a later version it is desirable to have features like
syntax highlighting, unlimited undo and redo and transparent co-editing with the user-interface. This will
however consume a considerable amount of work and a lots of issues concerning this are not clear yet. Thus
we decided to go for a simple editor for the start and enhance it as soon as the rest of the application is more
complete.

Masterthesis of David Berner 31

Figure 10: Properties Dialog.

7.4 Properties Dialog

The behavior-tree is very good to visualize the hierarchy, to get a quick impression of the topology of the
design and to check the type of the behaviors. It is not appropriate though as a display for the contents of the
behaviors.

To display variables, channels and ports we designed the editpr-widget (Figure 10). It has a QTabWid-
get with tree tabs named variables, channels and ports. Each tab looks exactly the same. They contain a
QListView with two columns, ”Name” and ”Type” . on the right hand side there are two QPushbuttons,
”Add” and ”Remove” . The properties-dialog is accessible either through the popupmenu of the behavior-tree
or through an icon in the application-toolbar. The dialog scales nicely on resizing and can be minimized or
maximized with the usual buttons in the upper right corner. The design of this dialog has been made using
QT-Designer. The generated class is called ”editpr” . The inherited class is called ”bhEditProp” . It provides
the editor with the required functionality. It takes an SIR Instance as parameter, and fills his QListViews with
the properties of this behavior. The title-bar of the dialog will display the name of the behavior. The buttons
add and remove are meant to let the user add and remove properties. The remove button currently shows the
user dependencies and leads him to the appropriate line in the SpecC-code in order that he can decide himself
what to do. The add-methods are currently not implemented. They should start a wizard which leads the user
through the process of adding a new property.

7.5 Profiler

The general task of the profiling is to compute all kinds of informations about the design. These informations
should help the user to make design decisions like allocation and partitioning. The profiling-tool itself is a
command-line-tool currently developed by Lucai Cai. It takes a pointer to a SIR Design. This design will
be annotated with some information. In oder to interact with the user-interface and to integrate the tool more
closely, we decided to specify an API for the profiling-tool and to compile it into a shared library. like this

Masterthesis of David Berner 32

Figure 11: Columns with Profiling Information

we could wrap it into a python module and use it interactively.

7.5.1 Columns

In order to evaluate profiling-results, the user wants to have a display which allows him to view as much
information as possible as fast as possible. Thus it seems very convenient to put the profiling results
as additional columns in the behavior-tree (Figure 11). Like this the user can choose the portion of the
behavior-tree which is most important to him by opening and closing branches and has the corresponding
data right besides it.

After profiling we display some columns which we consider as the most interesting ones. Depending on
the design characteristics there may be special data which is of great importance to the designer. Therefore
he is able to choose the columns which he wants to display from a big variety.

The columns displayed by default are Operations, Traffic and Memory Consumption. There can be chosen
columns for all different kinds of operations (like addition). For every operation there can be columns for
every data-type (e.g. integer 16 bit). Memory consumption and traffic can also be examined for every data-
type. Since there is 29 different data-types and 56 different operations in SpecC, there will be about 2000
different possible columns to choose from. In addition there are some higher level metrics computed from
others.

Masterthesis of David Berner 33

Figure 12: Pie-chart Widget.

7.5.2 Pie Chart

A disadvantage of the profiling-information in the columns is, that you only see numbers. Though most
people today are quite habile in comparing numbers, it is much more intuitive to compare information with a
more graphical representation. Therefore we decided to implement charts.

A pie-chart is a easily readable chart. Our Pie-widget (Figure 12) can take an arbitrary number of
key-value pairs and displays them as different colored slices in the pie. It has a legend which can be aligned
left, right or hidden. The overall sum is displayed in the subtitle, the amount of every single slice can be
displayed in the slice itself (either as absolute value, or as percentage).

The pie-chart-widget is used to display one criteria for one behavior (e.g. different kinds of operations for
behavior ”b2b3”).

Masterthesis of David Berner 34

Figure 13: Bar-chart Widget.

7.5.3 Bar Chart

Sometimes it is important to compare different behaviors for the same criteria. We could open several pie
charts and put them side by side, but this is not very satisfying. So we implemented the barchart-widget
(Figure 13). The barchart can display one criteria for several behaviors. It scales automatically to whatever
data it contains, the caption of the scale changes depending of the numbers to scientific or fixed display. If
there is negative data, the 0-line is moved to wherever it fit’s best.

Using the ”shift” or ”ctrl” – button, the user can select different behaviors form anywhere in the behavior-
tree. Once he chooses the criteria to be displayed the bar-chart will be shown in the MDI-workspace. It has
to be mentioned, that depending on the size of the screen it may not be advisable to select more than 10-15
behaviors at once.

7.6 Architecture Refinement Tool

After profiling is done, we can use the information obtained to make architecture refinement decisions. Ar-
chitecture refinement consists basically of allocation, partitioning and scheduling. We had to find ways to
make these decisions quick and easy to take.

7.6.1 Allocation Dialog

Allocation is basically the process of selecting the processors one wants to use in the design out of a list of
processors offered from an IP-database. The display we developed is shown in Figure 14.
The allocation-dialog contains two QListViews. On the left there is the list of available processors, on the
right the list of allocated processors. Between them there are two buttons to add or remove processors to the
design. On the very right, there are standard-buttons with captions ”OK” , ”Cancel” , ”Rename” and ”Help” .

Masterthesis of David Berner 35

Figure 14: Processor Allocation.

The list ”available” shows currently just an internally stored list of processors with information like clock,
performance and cost. This information should be taken from an IP-database later on. If you push the add-
button, a dialog will pop up, asking you for a name (Figure 15) - since it is perfectly allowed to allocate
several processors of the same kind, you have to give them a name in order to be able to identify them.
The application will annotate the design with the information shown in the ”allocated” -list (key values pairs of
processor-type and name). This information will be needed from the architecture refinement tool developed
by Junyu Peng.

7.6.2 Behavior Mapping

After processors have been allocated for the design, there will appear an additional column in the behavior-
tree call ”PE” . There is also added a menu-item in the popup-menu of the behavior-tree called ”map” . Click-
ing on it will show a sub-menu listing the names of all allocated processors. Choosing one of the processors
will map the currently selected behavior to this processor (Figure 16). At the same time the design will be
annotated with the appropriate information.
Behaviors which get not explicitly mapped will be mapped to the same processor as their parent-behavior.
Once the behavior-mapping is finished, you can run the architecture refinement (select ” refine” in the
architecture-menu). This will launch the first step of the architecture refinement. There will be an additional
level of hierarchy introduced representing the processors. Also there will be additional behaviors responsible
for the synchronization of the communication between the behaviors.

Masterthesis of David Berner 36

Figure 15: Nameenter Dialog.

7.6.3 Scheduling

After that there should follow the second step of the architecture refinement, the scheduling. Scheduling
means to sort all behaviors on one processor in a certain order. There is currently no display for the schedul-
ing. It is not just a one-dimensional problem since it should also be possible to schedule over the hierarchies.
After the order of the execution has been selected by the user, the architecture refinement tool has to be run
again in order to perform the changes in the SIR-datastructure.

7.7 Communication Refinement Tool

The communication refinement tool is currently developed by Samar Abdi. It’s main task is to map the
top-level-channels to busses and introduce transducers if necessary. Transducers are elements capable of
connecting two components with different protocols.

7.7.1 Bus Allocation

Similar to the processor allocation there have to be allocated busses. Since this process is almost the same,
we use the same display. This allows the user getting used to the GUI more quickly. As you see in Figure 17,
there is on the left a list of available busses which lists a selection of busses with some data: descriptive name,
Number of Address bits, number of data-bits and throughput in Mbit per second.
As with the processor-allocation dialog, one will be prompted for a name for the bus-instance (Figure 15).

7.7.2 Channel Mapping

After the bus-allocation one can select the item ”map channels” in the menu ”communication” . This will
open a dialog very similar to the previous (Figure 18). In fact, we used the ”allocation” -dialog, and just
applied a couple of modifications. In the list on the right hand side of the dialog figure all the top-level
channels which have to be mapped to a bus before the communication refinement-tool can be run. In the
QListView on the right hand side are listed all allocated busses. After selecting a bus and a channel, you can
add that channel to the bus. It will be listed in a tree under the bus.

After all channels are mapped, the list on the right side is empty and the channel-mapping is completed.
Now the dialog can be closed and the communication-refinement tool can be run by choosing the item

Masterthesis of David Berner 37

Figure 16: Behavior Mapping.

”Refine” in the menu ”Communication” .

Communication refinement will insert the appropriate busses and protocols into the design. If necessary
there will be transducers inserted. A transducer will appear as an additional component on the top-level of
the design.

7.8 Summary

Overall the implementation so far proves that python in conjunction with QT were a good choice for RE-
SpecCT and enabled rapid application development. RESpecCT is now a basic framework showing all nec-
essary concepts like accessing and modifying the SIR, integrating external tools and modules and provides
basic widgets for data-evaluation and for taking decisions. This is what was fixed in the specification of the
project (Section 4).
In addition to that it shows allocation and partitioning and can already be used to perform refinement to the
architecture level on basic designs. Besides the GUI there is still work to be done in the tools. So many of
the functions will only be available in the GUI after they have been implemented in the tools, but integration
and extension is straightforward.

Masterthesis of David Berner 38

Figure 17: Allocation of Busses.

Figure 18: Map the Top-level Channels to Busses.

Masterthesis of David Berner 39

8 Example

Now that it is clear what was implemented and how, we want to show how the program actually works. In
this section we describe the use of the program with the help of a small example-design.

Figure 19: Load an Example Design.

Figure 20: The Context Menu.

8.1 Loading and Examining Design

First we load a design into the project. We can do this by choosing the in the menu ”File” the item
”Open Design” or by just clicking on the open-icon in the toolbar. We choose our example-design called
” testbench.sir” . Instantly the behavior-tree of the design is displayed on the right hand side (Figure 19).
Now the user can browse through the hierarchy, the symbols of the behaviors tell what type they are (serial,
parallel, FSM, leaf or other).

Masterthesis of David Berner 40

Figure 21: Variables of the Behavior.

Figure 22: Channels of the Behavior.

Figure 23: Ports of the Behavior.

Masterthesis of David Berner 41

Figure 24: Source-code Editor for the Behavior.

Figure 25: Evaluating Dependencies while Deleting a Behavior.

A right mouseclick on a behavior displays the context-menu (Figure 20). There the user can choose to
view and edit the contained variables (Figure 21), channels (Figure 22) and ports (Figure 23), view and edit
the source-code (Figure 24) or to delete the selected behavior (Figure 25).

8.2 Profiling

The next step is to run the profiling-tool. This is done by choosing the item ”Profile Design” in the menu
”Profiler” . This takes typically a minute. After this we get three additional columns in the behavior-tree. They
display overall operations, traffic and storage for the behaviors. If the user wants to visualize the profiling
results, he can choose one or several behaviors by clicking on them with the ”Control” -key pressed. In the
contextmenu he then can choose the submenu ”Chart” . Now he can e.g. visualize the amounts of different
types of operations (Figure 26). Depending of the nature of the data the user wants to visualize, bar-charts or
a pie-charts are displayed.

Masterthesis of David Berner 42

Figure 26: View Profiling Results.

Figure 27: Allocating Processors for the Design.

8.3 Architecture Exploration

The main purpose of the profiling-information is to facilitate the decision-taking for the architecture-
exploration. The first decision to take there is to choose the processors we want to use in the design. This
process is called allocation of components (Figure 27). The next decision consists of mapping parts of the
design to the selected processors. We call this partitioning (Figure 28). If a behavior is not mapped explicitly
to a component, it will be mapped to the processor its parent is mapped to. After the mapping is performed
the architecture refinement tool can be run. Basically the tool adds a new level of hierarchy to the design,
which represents the processors and some additional behaviors, synchronizing the communication between
the processors. The resulting design is shown in Figure 29.

8.4 Communication Refinement

As the communication refinement basically consists of introducing protocols in order to get the communica-
tion between components cycle-accurate, we first allocate busses and then map the toplevel channels to these

Masterthesis of David Berner 43

Figure 28: Mapping Behaviors to Processors.

Figure 29: The Architecture Refinement Tool Introduces an Additional Level of Hierarchy.

(Figure 30). The bus-allocation can be called with the item ”Allocate busses ...” in the menu ”Communica-
tion” . As with the allocation of processors, we instantiate items of a list and give them unique names. Then
we choose the item ”Map channels ...” of the same menu which will show the toplevel channels and lets the
user map them to the allocated busses (Figure 31). If all toplevel channels have been mapped, the commu-
nication refinement tool can be called (item ”Refine” in the menu ”Communication”). The communication
refinement tool will inline bus-protocols in the design. If the protocols of the components do not match to
the connected bus, it will add additional components, called transducers which will transform one protocol to
another (Figure 32).

8.5 Refinement to RTL

The refinement of the register transfer level is still in early research stages and therefore there is no display
yet for it. We will develop displays and interfaces to this step as soon as it will be clear what information will
be exactly needed in order to get an efficient implementation.

Masterthesis of David Berner 44

Figure 30: Allocating Busses for the Design.

Figure 31: Mapping of the Toplevel Channels.

8.6 Summary

Although this is a very small example and therefore not all difficulties and special cases occur, it shows the
basic refinement steps quite clearly. We see, that the user has to make certain decisions manually, other parts
are automated and their result will reflect the quality of the decision previously taken by the user. Like this
he gets feedback and can approach a solution more compliant with the original constraints in an iterative
process.

Masterthesis of David Berner 45

Figure 32: The Communication Refinement Tool Inserts Protocols and, if necessary, Transducers.

9 Conclusion

Although there has been done substantial work on this project, it is far from being finished. However, to
finish it has never been the goal. The goal has been to establish a basic framework, create the essential
widgets, come up with all basic concepts how things should be implemented and verify them.

To use Python as the programming language and QT as the toolkit was a keen try, but apparently it turned
out to be the right choice. In very short time we managed to build a nice, friendly user-interface - and got a
convenient scripting-interface for SIR almost for free.

RESpecCT is far from being an industry-standard EDA-tool, but it shows the principles and methodology
of SpecC. Once it gets the lacking functionality it may convince people in the industry that SpecC is the
Golden Way to go in System Level Synthesis. And perhaps in a couple of years SpecC marks the beginning
of designs of so far unknown complexity and performance.

Masterthesis of David Berner 46

References

[1] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, SpecC: Specification Language and Design
Methodology, Kluwer Academic Publishers, 2000.

[2] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao, The SpecC Methodology, Technical Report ICS-
99-56, University of California, Irvine, December 1999.

[3] R. Dömer, The SpecC Internal Representation, Technical Report ICS-99, University of California,
Irvine, January 1999.

[4] Dan R. Olsen, Jr., Developing User Interfaces, San Francisco: Morgan Kauffmann Publishers, 1998.

[5] Trolltech AS, QT: The Official Documentation, New Riders Publishing, Devember 2000.

[6] Trolltech AS, QT Online Reference Documentation v2.2.4, http://doc.trolltech.com/index.html, January
2001.

[7] Matthias Kalle Dalheimer, Programming with Qt, Köln: O’Reilly, 1999.

[8] David M. Beazley, SWIG Users Manual v1.1, http://swig.sourceforge.net/doc.html, 1997.

[9] Guido van Rossum, Fred L. Drake, Jr., editor, Python Reference Documentation v2.0,
http://www.python.org/doc/current, October 2000.

[10] Mark lutz and David Ascher, Learning Python, O’Reilly, March 1999.

[11] Bruce Eckel, Thinking in C++, New Jersey: Prentice Hall, 1995.

[12] Herbert Schildt, C: The Complete Reference, Berkeley: Osborne McGraw-Hill, 1987.

[13] Herbert Schildt, Turbo C/C++, Berkeley: Osborne McGraw-Hill, 1990.

Masterthesis of David Berner 47

A Communication with the Tools

A.1 Profiler

A.2 Architecture Refinement Tool

The communication between the user-interface and the architecture refinement tool is made through annota-
tions in the SIR-datastructure. The datastructure itself is passed through an API between them. The following
information has to be delivered in the specified format:

� Allocation Information
The allocation information is a global annotation. It should look like this:
AR PES = ”name1:proc1 name2:proc2 ... nameN:procN”

where ”name1” is the name of the instance of processor one and ”proc1” is the the name of the
processor-definition

� Partitioning Information
The partitioning information is annotated in every behavior-instance. It is defined like this:
AR MAPPEDTO = ”proc name”

”proc name” is the name of the processor the behavior-instance is mapped to. If there is no such
annotation, the behavior-instance should be mapped to the processor it’s parent is mapped to.

� Scheduling Information
In order to perform scheduling, the tool needs information about the order children of a behavior are to
be executed on a processor.
AR prname1 = ” inst1 inst2 ... instN”
AR prname2 = ” inst1 inst2 ... instN”
AR prname3 = ” inst1 inst2 ... instN”

This means that for every processor there is an annotation with an ordered list of the children running on
this processor. If there is a flattened hierarchy, inst1.inst1 1 and inst1.inst1 2 are used instead of inst1
(presuming inst1 1, inst1 2 are child-behaviors of inst1). The ” AR prnamex” - annotations do not
exist in leaf-behaviors or flattened hierarchies since they only contain information about subbehaviors.

A.3 Communication Refinement-tool

The data-exchange with the communication refinement tool is made also through annotations in the SIR-
datastructure. We try to make them as similar as possible to the architecture refinement annotations, only we
use the prefix ” CR ” for them.

� Allocation:
List of the busses instantiated. ”Names” are the names of the instances, ”bus” are the names of the
actual busses.
CR BUSSES = ”name1:bus1 name2:bus2 ... nameN:busN”

� Channel mapping:
Each channel-instance is annotated like this:
” CR BUS = busnamex”
where ”busname” is the name of the appropriate bus-instance.

� Component-address:
CR ADDRESS = (INT) address

Masterthesis of David Berner 48

� Addressing scheme:
For each bus, there has to be specified an addressing-scheme

CR DEST START = (INT) first bit of destination address
CR DEST END = (INT) last bit of destination address
CR SOURCE START = (INT) first bit of source address
CR SOURCE END = (INT) last bit of source address
CR MULTI START = (INT) first bit of destination address
CR MULTI END = (INT) last bit of destination address

� Data transfer semantics:
Each bus we annotate also with a data transfer semantics:

CR SEND ADDRESS = 1 or 0
CR SEND ID = 1 or 0
CR SEND TYPE = 1 or 0
CR SEND SIZE = 1 or 0

� Name of the protocol:
CR PROTOCOL = protocolx

� Code of the protocol:
Additionally in each bus the code for the specified protocol has to be included (can be retrieved from
the protocol-database)

Masterthesis of David Berner 49

B Class Documentation

B.1 class allocation imp - Enhances the Dialog allocation

Declared in module allocation imp

B.1.1 Inheritance hierarchy:

allocation imp.allocation imp
allocation.allocation

B.1.2 Synopsis

class allocation_imp(allocation):
def allocation_imp.allocation_imp.__init__(self, parent, label=’Processor’) # Initi
def allocation_imp.allocation_imp.add(self) # Adds an item to the allocated -list.
def allocation_imp.allocation_imp.alloc_changed(item) # Is invoked when the selecti
def allocation_imp.allocation_imp.avail_changed(item) # Is invoked when the selecti
def allocation_imp.allocation_imp.remove(self) # Remove item from the allocated -li

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from allocation.allocation
def allocation.allocation.__init__(self, parent=None, name=None, modal=0, fl=0)
def allocation.allocation.add(self)
def allocation.allocation.alloc_changed(self, a0)
def allocation.allocation.avail_changed(self, a0)
def allocation.allocation.event(self, ev)
def allocation.allocation.remove(self)
def allocation.allocation.rename(self)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

Masterthesis of David Berner 50

B.1.3 Description

B.1.3.1 It offers a list of predefined processors with some data and let’s the user allocate them for the
design. Every instantiated processor (or bus) has to be named (the user will be prompted for a name).

self.available: list of available items

self.allocated: list of allocated items

self.add button: add items to allocated

self.remove button: remove items from allocated

self.label: defines the type of items which are listed (e.g. "processor")

B.1.4 allocation imp.allocation imp.add(self)

Adds an item to the allocated -list. If an item on the right side is marked, you will be asked for a name
(dialog name enter). The item will be added on the list on the right hand side.

B.1.5 allocation imp.allocation imp.alloc changed(item)

Is invoked when the selection of allocated changes Will be used to enable/diable the remove-button. Not
used yet

B.1.6 allocation imp.allocation imp.avail changed(item)

Is invoked when the selection of available changes Will be used to enable/diable the add-button. Not
used yet

B.1.7 allocation imp.allocation imp.remove(self)

Remove item from the allocated -list If no item is selected, an information-box will be shown, else the
selected itme will be removed from the list.

B.2 class ApplicationWindow - The MDI Application-window

Declared in module RESpecCT

B.2.1 Inheritance hierarchy:

RESpecCT.ApplicationWindow
qt.QMainWindow

Masterthesis of David Berner 51

B.2.2 Synopsis

class ApplicationWindow(QMainWindow):
def RESpecCT.ApplicationWindow.__init__(self) # Initialize the main-window
def RESpecCT.ApplicationWindow.about(self) # Display an about-messagebox
def RESpecCT.ApplicationWindow.aboutQt(self)
def RESpecCT.ApplicationWindow.ar_refine(self) # Run the partitioning-refinement-to
def RESpecCT.ApplicationWindow.comm_refine(self) # Call the communication refinemen
def RESpecCT.ApplicationWindow.designUpdate(self) # Update the display with the sir
def RESpecCT.ApplicationWindow.edit_sc(self, fileName=’’, path=’’, line=0) # Open a
def RESpecCT.ApplicationWindow.findfile(self, dir, file) # Find a SpecC-file in the
def RESpecCT.ApplicationWindow.map_chnl(self) # Map high-level-channels to allocate
def RESpecCT.ApplicationWindow.map_pr(self, click) # Map a behavior to a processor
def RESpecCT.ApplicationWindow.nop(self) # Does nothing
def RESpecCT.ApplicationWindow.openDesign(self, fileName=None) # Opens a new design
def RESpecCT.ApplicationWindow.profile(self) # Run the profiler on the current desi
def RESpecCT.ApplicationWindow.saveDesign(self, id=0) # Shows a savedialog
def RESpecCT.ApplicationWindow.select_busses(self) # Do the allocation of busses
def RESpecCT.ApplicationWindow.select_procs(self) # Do the allocation of processors

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QMainWindow
def qt.QMainWindow.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

B.2.3 Description

This is the main-window. It contains a menu, treewindow and an mdi-workspace. And several toolbars. It
manages all main objects like the behavior-tree and keeps references to them. Importand class-variables:

self.design: Reference to the actually displayed SIR Design.

self.mbh: Reference to the mainbehavior of the design.

self.charts: List of open chartwidgets.

self.procs: List of allocated processors. Format: [(’procname1’ ,’ instname1’),(...),...]

Masterthesis of David Berner 52

self.busses: List of allocated busses. Format: [(’busname1’ ,’ instname1’),(...),...]

self.sc edits: Dictionary of open SpecC code editor windows. Format: fg

self.sir: Reference to sc tree-widget

self.ws: Reference to MDI-workspace

self.menuBar: Menubar

self.statusBar: Statusbar

B.2.4 RESpecCT.ApplicationWindow. init (self)

Initialize the main-window
All variables are initialized, the menu is filled, toolbars instantiated, the splitter, a tree and a QWorkspace

are instantiated

B.2.5 RESpecCT.ApplicationWindow.ar refine(self)

Run the partitioning-refinement-tool
To run this method, partitioning has to be performed and a top-level behaviors has to be set. After running

it, the bahvior-tree will be updated with the resulting design

B.2.6 RESpecCT.ApplicationWindow.designUpdate(self)

Update the display with the sir-file in memory
Clears the behavior-tree and redisplays the contents of the design

B.2.7 RESpecCT.ApplicationWindow.edit sc(self, fileName=”, path=”, line=0)

Open a SpecC-file in the code-editor
Takes a filename, an optional path and an optional linenumber if the file exists it is opened and displyed

in a QMultiLineEdit The Caption of the titlebar of the editor will be the filename, the icon will be set to the
specc-icon

B.2.8 RESpecCT.ApplicationWindow.findfile(self, dir, file)

Find a SpecC-file in the current directory
This method takes a QDir and a filename. The directory and it’s subdiractories are successively searched

for the specified filename. The comlete path of the first occurence is returned. if it is not found, an empty
string is returned

B.2.9 RESpecCT.ApplicationWindow.map chnl(self)

Map high-level-channels to allocated busses
Opens a bus map -dialog in order to let the user map the top-level channels to the allocated busses.

Masterthesis of David Berner 53

B.2.10 RESpecCT.ApplicationWindow.map pr(self, click)

Map a behavior to a processor
Gets called when the user clicks on a processor in the contextmenu of the behavior-tree. Determines

which processor was selected, puts the name of that processor into the column and annotates the instance in
the SIR Design

B.2.11 RESpecCT.ApplicationWindow.nop(self)

Does nothing
Used for functions in the GUI which are not yet implemented (e.g. buttons or menu-items

B.2.12 RESpecCT.ApplicationWindow.openDesign(self, fileName=None)

Opens a new design
Uses QFileDialog; Loads SIR and sc-files, however if filename is specified, it is assumed to be a SIR-file

B.2.13 RESpecCT.ApplicationWindow.profile(self)

Run the profiler on the current design, display some general results
First the design is instrumented, then compiled and simulated, then profiled and eventually analysed with

a certain weight-table. After all these steps have been successful, there are added some columns of general
interest to the design (like traffic, operations and storage)

B.2.14 RESpecCT.ApplicationWindow.saveDesign(self, id=0)

Shows a savedialog
Lets the user save the design as SIR or SC

B.2.15 RESpecCT.ApplicationWindow.select busses(self)

Do the allocation of busses
Opens an allocation imp -dialog, adjusts all the captions and columnnames in the dialog, Insets some

sample-data into the list of available busses. After closing the dialog, a list of the allocated busses is stored
in self.busses.

B.2.16 RESpecCT.ApplicationWindow.select procs(self)

Do the allocation of processors (achitecture exploration)
Opens the processor-allocation dialog (allocation imp) and let’s the user select processors. After the dialog

is closed, a column "PE" is added to the tree (if not already existent and the allocated processors are inserted
into the context-menu in order to give the user the possibility to perform partitioning.

B.3 class bus map

Declared in module bus map

Masterthesis of David Berner 54

B.3.1 Inheritance hierarchy:

bus map.bus map
allocation.allocation

B.3.2 Synopsis

class bus_map(allocation):
def bus_map.bus_map.__init__(self, parent)
def bus_map.bus_map.add(self)
def bus_map.bus_map.alloc_changed(item)
def bus_map.bus_map.avail_changed(item)
def bus_map.bus_map.remove(self)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from allocation.allocation
def allocation.allocation.__init__(self, parent=None, name=None, modal=0, fl=0)
def allocation.allocation.add(self)
def allocation.allocation.alloc_changed(self, a0)
def allocation.allocation.avail_changed(self, a0)
def allocation.allocation.event(self, ev)
def allocation.allocation.remove(self)
def allocation.allocation.rename(self)

Inherited from qt.QDialog
def qt.QDialog.__init__(self, *args)

B.4 class SC item - Itemclass for the SC tree

Declared in module spec tree

Masterthesis of David Berner 55

B.4.1 Inheritance hierarchy:

spec tree.SC item
qt.QListViewItem

B.4.2 Synopsis

class SC_item(QListViewItem):
def spec_tree.SC_item.__init__(self, parent, inst, name) # Initialize the Item
def spec_tree.SC_item.arSchAnnotate(self)
def spec_tree.SC_item.changeBeh(self, ask) # Change the SIR_behavior of the item.
def spec_tree.SC_item.fill_column(self, column, name) # fill the column with the an
def spec_tree.SC_item.getItemlist(self, Beh=None) # Return a List with all Instance
def spec_tree.SC_item.mappedTo(self) # Returns the processor it is mapped to.

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QListViewItem
def qt.QListViewItem.__init__(self, *args)

B.4.3 Description

Extends QlistViewItem with the functionality of displaying and handling with SIR BhvrInstances. Class
Variables:

self.Inst: Reference to the currently displayed instance.

self.Beh: SIR Behavior of currently displayed instance

self.proc: Processor this instance is mapped to (only after partitioning)

B.4.4 spec tree.SC item. init (self, parent, inst, name)

Initialize the Item
Chooses the corresponding icon for the Item. Creates all child-items

parent: parent-item

inst: instance to be displayed

name: name of the instance

B.4.5 spec tree.SC item.changeBeh(self, ask)

Change the SIR behavior of the item.
Changes the SIR Behavior of the item. Performs the change not only in the SC tree, but also in the SIR.

Checks is there is multiple instantiations of the parent-behavior. Asks if the change should be performed for
all instantiations or only for this.

Masterthesis of David Berner 56

B.4.6 spec tree.SC item.fill column(self, column, name)

fill the column with the annotated value of note name

column: is the number of the column the value should be added

name: name of the annotation

B.4.7 spec tree.SC item.getItemlist(self, Beh=None)

Return a List with all Instances of a Behavior
Uses SC tree.beh dic to retrieve the information, returns a list of SC items

B.4.8 spec tree.SC item.mappedTo(self)

Returns the processor it is mapped to.
If the item is mapped to no processor, the mapping of the parent applies.

B.5 class SC tree - Tree of Sir-behavior instances

Declared in module spec tree

B.5.1 Inheritance hierarchy:

spec tree.SC tree
qt.QListView

B.5.2 Synopsis

class SC_tree(QListView):
def spec_tree.SC_tree.__init__(self, parent) # Initialize the SC_tree.
def spec_tree.SC_tree.arSchAnnotate(self) # Annotate the Design with the scheduling
def spec_tree.SC_tree.clear(self) # Clean up tree
def spec_tree.SC_tree.col_add(self, note_name, name=None) # Add a profiling-column
def spec_tree.SC_tree.popup(self, item, point, col) # Display popup menu
def spec_tree.SC_tree.readSC(self, file) # Display hierarchy of an SIR_Design
def spec_tree.SC_tree.readSIR(self, file) # Display hierarchy of an SIR_Design
def spec_tree.SC_tree.updateSelected(self) # Keep list of selected items correct

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QListView
def qt.QListView.__init__(self, *args)

Inherited from qt.QFrame
def qt.QFrame.__init__(self, *args)

Masterthesis of David Berner 57

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QScrollView
def qt.QScrollView.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

B.5.3 Description

Extends QListview with the capabilities of reading and displaying the behavioral hierarchy of SIR Design’s.
It assigns different icons to different types of behaviors and has a popup-menu with options to display and
modify the behaviors. Class Variables:

self.beh dic: Dictionary of all contained behaviors of form f’ beh name1’ :SC item1,...g. Mainly in order to
deal with a restriction of PyQt v 2.2 and earlier, that references to subclassed c-objects have to be kept.

self.column dic: Dictionary containing all columns currently displaed in the tree. It has the form
f’ col name1’ :(int)col number, ...g. It is useful in order to check if a column exists and ant which
position.

self.app: Reference to the Main-window

self.select list: List of selected SC items

B.5.4 spec tree.SC tree. init (self, parent)

Initialize the SC tree.
Allows selection of multiple behaviors, disable sorting.

B.5.5 spec tree.SC tree.arSchAnnotate(self)

Annotate the Design with the scheduling-decisions made in the GUI
this is not in use yet, code existend was originally for something else, but can perhaps be re-used

B.5.6 spec tree.SC tree.clear(self)

Clean up tree
This method overrides/extends the clean-method of QListView. Removes all displayed items and columns.

Also cleans up "self.beh dic" and "self.column dic".

Masterthesis of David Berner 58

B.5.7 spec tree.SC tree.col add(self, note name, name=None)

Add a profiling-column in the behavior-tree

note name: Name of the Annotation in the SIR. the profiling-prefix is added automatically (e.g.
operations -> PR operations

name: Name of the column to add. By default it will be the name of the annotation.

B.5.8 spec tree.SC tree.popup(self, item, point, col)

Display popup menu
This is the slot-function of the right-mouseclick event of the tree. It displays a popupmenu at the current

position and sets "self.app.item" to the currently selected item.

B.5.9 spec tree.SC tree.readSC(self, file)

Display hierarchy of an SIR Design
Takes a filename (including path) of a .SC-file, reads it and displays it. Only the Top-level behavior is

loaded, then the class SC item takes care of the rest of the design. Since the ’ReadSC’-function of SIR does
not support preprocessor commands right now, the specc-file should not include any preprocessor commands
or be already preprocessed. TODO: Include preprocessor-functionality.

B.5.10 spec tree.SC tree.readSIR(self, file)

Display hierarchy of an SIR Design
Takes a filename (including path) of a .SIR-file, reads it and displays it. Only the Top-level behavior is

loaded, then the class SC item takes care of the rest of the design.

B.5.11 spec tree.SC tree.updateSelected(self)

Keep list of selected items correct
This methos is a slot for selection change. updates the list of selected items in order to provide it for the

convenience of other methods.

B.6 class scalestruct - Small helperclass for scaling

Declared in module bar chart

B.6.1 Synopsis

class scalestruct:
def bar_chart.scalestruct.__init__(self, i=0, l=0)

B.6.2 Description

contains only two values: intervall of the scale and limitvalue which is the maximal value of the scale

Masterthesis of David Berner 59

B.7 class QxBarChart - Barchart with arbitrary number of columns and rows

Declared in module bar chart

B.7.1 Inheritance hierarchy:

bar chart.QxBarChart
qt.QWidget

B.7.2 Synopsis

class QxBarChart(QWidget):
def bar_chart.QxBarChart.__init__(self, parent=None, Chartdata=0, Style=1, name=’’,
def bar_chart.QxBarChart.close(self, bool) # Close and delete the Chart
def bar_chart.QxBarChart.doGeometry(self, P) # Calculate the dimensions of the cont
def bar_chart.QxBarChart.drawChartData(self, P) # Draw the actual bars
def bar_chart.QxBarChart.drawHorizontalLines(self, P) # Draw horizontal lines to re
def bar_chart.QxBarChart.drawLegends(self, P) # Draws the legends for the chart.
def bar_chart.QxBarChart.drawScale(self, P) # Draws the x and y-scales and the grid
def bar_chart.QxBarChart.drawTitles(self, P) # .
def bar_chart.QxBarChart.drawXLegends(self, P) # Draw the Legends for the X-axis
def bar_chart.QxBarChart.paintEvent(self, PaintEvent) # On every PaintEvent the dis
def bar_chart.QxBarChart.setChartData(self, Chartdata) # Set a new Chartdata

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

B.7.3 Description

Best display not more than 5 rows an 15 columns are recommended (depending on the size on the screen you
choose).

B.7.4 bar chart.QxBarChart. init (self, parent=None, Chartdata=0, Style=1, name=”, f=0)

Initialises the Chart

parent parent-widget on which it will be centered

Masterthesis of David Berner 60

Chartdata QxChartData conaining the data, labels and Fonts

Style show legends on x-axis or not

B.7.5 bar chart.QxBarChart.close(self, bool)

Close and delete the Chart
First call the close-method of QWidget, then deletes the widget. It also removed the chart form the list of

charts held in the Application

B.7.6 bar chart.QxBarChart.doGeometry(self, P)

Calculate the dimensions of the content

� self.titleRect

� self.subTitleRect

� self.footerRect

� self.scaleRect

� self.chartDataRect

� self.xlegendsRect

� self.legendsRect

B.7.7 bar chart.QxBarChart.drawChartData(self, P)

Draw the actual bars

� P is the painter where the data is painted into.

� To draw the bars in the chart, we first detect where the zeroline will be.

� The scaling of the bars is obtained from self.qxScale.

� The colors for the series are taken consecutively from the qxColorlist.

� Between two series there will be a small space

B.7.8 bar chart.QxBarChart.drawHorizontalLines(self, P)

Draw horizontal lines to reflect the scale accross the entire barchart

� The number of lines is equal to (number of scale items

� 1).

� We iterate bottom up and draw a Draw line across the drawing area for the barchart.

� The QxScale method valueScaleRatio(it) determines the ratio for the particular item in y
space.

� We need to iterate through the scalevalues,and set the y-coordinate to self.qxScale.valueScaleRatio(it)
* height of the datarect.

Masterthesis of David Berner 61

B.7.9 bar chart.QxBarChart.drawLegends(self, P)

Draws the legends for the chart.
legendsRect.height is split into ten if the number of series are less than ten, else it is split into the

numer of columns. The colors are taken consecutively from QxCommonColor

B.7.10 bar chart.QxBarChart.drawScale(self, P)

Draws the x and y-scales and the grid
If on the Y-axis the value is > 1000 or the step of the scaple is < 1/100, the value is displayed in scientific

mode (e.g. 1.3 e-5), if jvaluej is < 1000, the display is absolute

B.7.11 bar chart.QxBarChart.drawTitles(self, P)

.
Draw the Title, Subtitle and Footer

B.7.12 bar chart.QxBarChart.drawXLegends(self, P)

Draw the Legends for the X-axis

� Loop from left to right;

� Spacing is width / len(xlegends).

� Split xlegendsRect into len(xlegends) rects

B.7.13 bar chart.QxBarChart.paintEvent(self, PaintEvent)

On every PaintEvent the display is refreshed
Updates the geometry of the widget and then repaints all of it’s contents (data, legends and captions)

B.7.14 bar chart.QxBarChart.setChartData(self, Chartdata)

Set a new Chartdata
If it is None, a new QxChartData -instance is created. Initializes qxscale and draws the chart for the

first time

B.8 class QxChartData - Contains all the data for the Chart

Declared in module bar chart

B.8.1 Synopsis

class QxChartData:
def bar_chart.QxChartData.__init__(self, data=[[400, 80, 150], [111, 270, 543]], row
def bar_chart.QxChartData.cols(self) # Return number of columns
def bar_chart.QxChartData.getColumnName(self, pos)
def bar_chart.QxChartData.getFooter(self)
def bar_chart.QxChartData.getFooterFont(self)
def bar_chart.QxChartData.getLegendsFont(self)

Masterthesis of David Berner 62

def bar_chart.QxChartData.getRowName(self, pos)
def bar_chart.QxChartData.getSubTitle(self)
def bar_chart.QxChartData.getSubTitleFont(self)
def bar_chart.QxChartData.getTitle(self)
def bar_chart.QxChartData.getTitleFont(self)
def bar_chart.QxChartData.getValue(self, c, r)
def bar_chart.QxChartData.getXLegendsFont(self)
def bar_chart.QxChartData.highestValue(self) # Return the highest value of the char
def bar_chart.QxChartData.lowestValue(self) # Return the lowest value of the chart
def bar_chart.QxChartData.rows(self) # Return number of rows
def bar_chart.QxChartData.setFooter(self, footer, font)
def bar_chart.QxChartData.setLegendsFont(font)
def bar_chart.QxChartData.setSubTitle(self, title, font)
def bar_chart.QxChartData.setTitle(self, title, font=0)
def bar_chart.QxChartData.setXLegendsFont(font)

B.8.2 Description

self.data: Is of the form [[r1 1,r1 2,r1 3],[r2 1,r2 2,r2 3]]

self.rowlabels: [row l1,row l2]

self.col labels: [col l1,col l2]

titles: Strings for title, subtitle and footer

fonts: Every label has a font

B.8.3 bar chart.QxChartData. init (self, data=[[400, 80, 150], [111, 270, 543]],
row labels=[’breakfast’, ’lunch’], col labels=[’spam’, ’egg’, ’ham’], title=”)

Constructor takes data, row labels, col labels and title
all other data has to be set either directly: ’ cd.subTitle=’spanish” or through the set-methods:

cd.setSubTitle(’inquisition’)

B.9 class QxPie - Class representing the pie of the widget.

Declared in module piewidget

B.9.1 Synopsis

class QxPie:
def piewidget.QxPie.__init__(self) # Constructor
def piewidget.QxPie.append(self, slice) # Append slice
def piewidget.QxPie.arcLength(self, index) # Lenght of arc
def piewidget.QxPie.arcStart(self, index) # Start of the arc
def piewidget.QxPie.at(self, pos) # .
def piewidget.QxPie.count(self) # Count slices
def piewidget.QxPie.insert(self, pos, slice) # Insert slice

Masterthesis of David Berner 63

def piewidget.QxPie.sliceRatio(self, index) # Relative value of slice
def piewidget.QxPie.sliceRatioAsPercentageString(self, index) # Ratio as percentage
def piewidget.QxPie.sliceRatioAsString(self, index, precision=2)

B.9.2 Description

It contains a list of slices (self.list) containing the actual data and a number of accessor-methods which
calculate geometrical results.

B.9.3 piewidget.QxPie. init (self)

Constructor
Initialize the list.

B.9.4 piewidget.QxPie.append(self, slice)

Append slice
Append a slice at the end of the list.

B.9.5 piewidget.QxPie.arcLength(self, index)

Lenght of arc
Returns the actual length of the arc of the slice at position index in the list

B.9.6 piewidget.QxPie.arcStart(self, index)

Start of the arc
Returns the position where the arc of the slice at index starts.

B.9.7 piewidget.QxPie.at(self, pos)

.
Return the slice at the position pos.

B.9.8 piewidget.QxPie.count(self)

Count slices
Return the number of slices.

B.9.9 piewidget.QxPie.insert(self, pos, slice)

Insert slice
Insert a slice at position pos.

B.9.10 piewidget.QxPie.sliceRatio(self, index)

Relative value of slice
Returns the ration of the sum of all slices and the value of the slice at index Example: slice1=5 slice2=10

slice3=15; ration of slice2 is 10 / (5+10+15)= 1/3; slice 2 occupies one third of the circle (=120 degree).

Masterthesis of David Berner 64

B.9.11 piewidget.QxPie.sliceRatioAsPercentageString(self, index)

Ratio as percentage
Same as sliceRatio, only that it does return a string representing the percentage, not the actual ratio.

B.10 class QxPieWidget - Pie-Widget class.

Declared in module piewidget

B.10.1 Inheritance hierarchy:

piewidget.QxPieWidget
qt.QWidget

B.10.2 Synopsis

class QxPieWidget(QWidget):
def piewidget.QxPieWidget.__init__(self, parent=0, name=0, f=0, pie=0, align=1, show
def piewidget.QxPieWidget.addSlice(self, slice, pos) # Add a slice to the pie
def piewidget.QxPieWidget.close(self, bool) # Close the Widget
def piewidget.QxPieWidget.doGeometry(self) # Calculate the geometry of the pie
def piewidget.QxPieWidget.drawLegends(self, P) # .
def piewidget.QxPieWidget.drawSlices(self, P) # .
def piewidget.QxPieWidget.drawText(self, P) # .
def piewidget.QxPieWidget.drawTitle(self, P) # .
def piewidget.QxPieWidget.explodeFlag(self, explode) # Set the distance between sli
def piewidget.QxPieWidget.explodePoint(self, c) # "explode" the pie.
def piewidget.QxPieWidget.legendsAlignFlag(self, align) # Set the alignment of the
def piewidget.QxPieWidget.paintEvent(self, paintev) # Repaint the pie
def piewidget.QxPieWidget.resizeEvent(self, resizeEV) # .
def piewidget.QxPieWidget.setPie(self, pie) # Insert a new pie
def piewidget.QxPieWidget.set_data(self, data, title=’’, subtitle=’’, footer=’’, leg
def piewidget.QxPieWidget.showFlag(self, show) # Set data shown in slice
def piewidget.QxPieWidget.signalStyleChanged(self, str)

Inherited from qt.QObject
def qt.QObject.__init__(self, *args)

Inherited from qt.Qt
def qt.Qt.__del__(self)
def qt.Qt.__init__(self, *args)

Inherited from qt.QPaintDevice
def qt.QPaintDevice.__del__(self)
def qt.QPaintDevice.__init__(self, *args)

Inherited from qt.QWidget
def qt.QWidget.__init__(self, *args)

Masterthesis of David Berner 65

B.10.3 Description

Class for displaying pie-charts.

B.10.4 piewidget.QxPieWidget. init (self, parent=0, name=0, f=0, pie=0, align=1, show=64, ex-
plode=128)

Constructor for pie-widgets
...

B.10.5 piewidget.QxPieWidget.addSlice(self, slice, pos)

Add a slice to the pie

slice: a QXslice-object

pos: the position where the slice is to be inserted (integer)

B.10.6 piewidget.QxPieWidget.close(self, bool)

Close the Widget
first call widgets-close-method, then delete widget

B.10.7 piewidget.QxPieWidget.doGeometry(self)

Calculate the geometry of the pie
Determines hom much space for every element in the widget is there and positions them.

B.10.8 piewidget.QxPieWidget.drawLegends(self, P)

.
Draw the legends of the pie.

B.10.9 piewidget.QxPieWidget.drawSlices(self, P)

.
Draw the slices of the pie (actual data). the colors are takes succesively from qxColorlist.

B.10.10 piewidget.QxPieWidget.drawText(self, P)

.
Draw the text of the pie. Evaluates the show-flag.

B.10.11 piewidget.QxPieWidget.drawTitle(self, P)

.
Draws the titles of the pie (title, subtitle and footer). The specific font sets apply.

Masterthesis of David Berner 66

B.10.12 piewidget.QxPieWidget.explodeFlag(self, explode)

Set the distance between slices
The explode-flag means, that the slices ale slightly pulled out, which might result in a better overview.

Possible values are:

B.10.13 piewidget.QxPieWidget.explodePoint(self, c)

"explode" the pie.
Evaluates the explode-flag

B.10.14 piewidget.QxPieWidget.legendsAlignFlag(self, align)

Set the alignment of the legends

align: flag with possible values: QxLegendsToLeft, QxLegendsToRight or QxNoLegends

B.10.15 piewidget.QxPieWidget.paintEvent(self, paintev)

Repaint the pie
redraws the title, slices, legends and the text.

B.10.16 piewidget.QxPieWidget.resizeEvent(self, resizeEV)

.
Resize the pie and update its geometry.

B.10.17 piewidget.QxPieWidget.setPie(self, pie)

Insert a new pie
The old pie is saved as self.oldPie

B.10.18 piewidget.QxPieWidget.set data(self, data, title=”, subtitle=”, footer=”, legendstitle=”)

initializes the pie with data and text and displays it
data is a list of value-pairs like [("slicename1", value1),("slice2", v2) ...] labels is a list of three strings:

[’ title’ ,’subtitle’ ,’ footer’] font is the font for all the three labels

B.10.19 piewidget.QxPieWidget.showFlag(self, show)

Set data shown in slice
Inside a slice can be displayed:

QxShowSliceRatio: QxShowValues: – QxShowLabels: – QxShowPercentage: -

QxShowValues: QxShowLabels: – QxShowPercentage: -

QxShowLabels: QxShowPercentage: –

B.11 class QxScale - Create a scale between two given double numbers

Declared in module bar chart

Masterthesis of David Berner 67

B.11.1 Synopsis

class QxScale:
def bar_chart.QxScale.__init__(self, s=0, high=0) # either none, one or two paramet
def bar_chart.QxScale.count(self) # Return the number of scalevalues
def bar_chart.QxScale.createScale(self) # Create a new scale
def bar_chart.QxScale.getScale(self) # Return self.scalevalues
def bar_chart.QxScale.num_intervall(self, Highest) # Determine the number of interv
def bar_chart.QxScale.valueScaleRatio(self, it) # Basically just determines the hei
def bar_chart.QxScale.zeroLineRatio(self) # Determine the position of the zeroline

B.11.2 Description

This class tries to make a scale for a set of values. The intervall and the maximal value of the scale are chosen
such, that there is only 4-6 scalevalues with very few digits (e.g. 0.1, 0.2, 0.3, 0.4). For creating a scale we
distinguish tree cases:

CASE 1: -x1............0..........+x2

Creates an appropriate scale from -x1 to +x2. If j-x1j > x2 the negative side determines the scaling. If x2
>= j-x1j the positive side determines the scaling.

CASE 2: 0.........................+x2

Scaling done from 0 to x2

CASE 3: -x1.......................0

Scaling done from -x1 to 0.

B.11.3 bar chart.QxScale. init (self, s=0, high=0)

either none, one or two parameters

none: everything =0.0

one: self.scalevalues is initialized

two: low, high

B.11.4 bar chart.QxScale.createScale(self)

Create a new scale
Clear first the scalevalues list, just in case we have run this before, then fill it up. Here the values of

self.highest and self.lowest are evaluated

B.11.5 bar chart.QxScale.num intervall(self, Highest)

Determine the number of intervalls needed
Attempts to choose the number of intervalls such, that the intervalls are as even as possible returns a

scalestruct (pair of intervall and limitvalue)

Masterthesis of David Berner 68

B.11.6 bar chart.QxScale.valueScaleRatio(self, it)

Basically just determines the height of the bar
it is the index of the scalevalue to be examined. The method returns the (relative) height of the resulting

bar.

B.11.7 bar chart.QxScale.zeroLineRatio(self)

Determine the position of the zeroline

� If beginning is equal to zero, the ratio is 1

� If end is equal to zero, the ratio is 0

� If zero is found somewhere in between: 1-(beg/(beg+end))

B.12 class QxSlice - Slice of a pie

Declared in module piewidget

B.12.1 Synopsis

class QxSlice:
def piewidget.QxSlice.__init__(self, v=0, label=0) # Constructor for a Slice.
def piewidget.QxSlice.setLabel(self, label) # .
def piewidget.QxSlice.setValue(self, v) # .
def piewidget.QxSlice.value(self) # .
def piewidget.QxSlice.valueString(self, precision=2) # return a string representign

B.12.2 Description

Represents a slice of a pie. It contains a value and a label.

B.12.3 piewidget.QxSlice. init (self, v=0, label=0)

Constructor for a Slice.
Assigns an initial value and a label

B.12.4 piewidget.QxSlice.setLabel(self, label)

.
Assign a new label to the slice

B.12.5 piewidget.QxSlice.setValue(self, v)

.
Assign a new value to the slice

Masterthesis of David Berner 69

B.12.6 piewidget.QxSlice.value(self)

.
Access the variable Value

B.12.7 piewidget.QxSlice.valueString(self, precision=2)

return a string representign the value
precision optionally specifies the precision with which floating-point numbers are converted. Default

is 2 digits.

Masterthesis of David Berner 70

C Code-examples

C.1 Header-file of SIR Behavior

/��/
2 /� IntRep/Behavior.h : SpecC Internal Representation , Level 2, Behaviors �/

/��/
4 /� Author: Rainer Doemer first version : 07/06/98 �/

/��/
6 /� last update : 04/12/99 �/

8 #ifndef INTREP BEHAVIOR H
#define INTREP BEHAVIOR H

10

#include ”Global.h”
12 #include ” IntRep/Class .h”

14 /��� enumeration types ��/

16 enum SIR BehaviorClass /� supported behavior classifications �/
f

18 SIR BHVR EXTERN, /� external behavior (black box) �/
SIR BHVR LEAF, /� leaf behavior �/

20 SIR BHVR SEQ, /� ” clean ” sequential behavior �/
SIR BHVR PAR, /� ” clean ” concurrent behavior (par fg) �/

22 SIR BHVR PIPE, /� ” clean ” pipelined behavior (pipe fg) �/
SIR BHVR FSM, /� ” clean ” FSM�style behavior (fsmfg) �/

24 SIR BHVR TRY, /� ” clean ” exception�handling behavior (try fg) �/
SIR BHVR OTHER /� ” dirty ” compound behavior �/

26 g;

28 /��� type definitions ���/

30 typedef enum SIR BehaviorClass SIR BHVR CLASS;
typedef class SIR Behavior sir behavior ;

32 typedef SIR List<sir behavior> sir behavior list ;
typedef class SIR Behaviors sir behaviors ;

34 typedef ERROR (� sir bhvr fct)(sir behavior �, void�);
typedef class SIR Design sir design ; /� cyclic link �/

36

/��� class declarations ���/
38

/��������������������/
40 /��� SIR Behavior ���/

/��������������������/
42

class SIR Behavior : /� behavior class in hierarchy tree �/
44 public SIR ListElem<SIR Behavior>, /� is a list element �/

Masterthesis of David Berner 71

public SIR Class /� and a class �/
46 f

public :
48 SIR BHVR CLASS BehaviorClass; /� behavior classification (see above) �/

sir function �MainMethod; /� link to main method (or NULL) �/
50 sir statement �FirstBhvrCall ; /� link to first subbehavior call (or NULL) �/

sir statement �BehaviorCalls ; /� link to cmpnd.stmnt. with behavior calls �/
52 /� (if SEQ or PAR or PIPE, else NULL) �/

sir transitions � Transitions ; /� link to transitions (if FSM, else NULL) �/
54 sir exceptions �Exceptions; /� link to exceptions (if TRY, else NULL) �/

56 //++++++++++++++++++++++++++++ API Layer 1 +++++++++++++++++++++++++++++//

58 SIR Behavior(/� constructor #1 (initial) �/
sir symbol �Symbol);

60

˜SIR Behavior(void); /� destructor �/
62 void FinishConstruction (void); /� perform construction phase 2 �/

void UpdateInfos(void); /� update classification and links �/
64 static sir behavior �GetBehavior(/� obtain behavior pointer (level 2) �/

sir symbol �Symbol); /� from a behavior symbol �/
66

//++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//
68

static sir behavior �Create(/� create a new behavior �/
70 const char �Name, /� (returns NULL if SIR Error) �/

sir design �Design,
72 BOOL Internal = FALSE); /� default : without body �/

74 sir behavior �Copy(/� create an exact copy with new name �/
const char �Name, /� (returns NULL if SIR Error) �/

76 BOOL Strip = TRUE);

78 ERROR Rename(/� rename this behavior �/
const char �Name);

80

ERROR Delete(void); /� delete this behavior �/
82 sir behaviors �GetList (void); /� obtain a pointer to the behavior list �/

SIR BHVR CLASS GetClass(void); /� obtain this behaviors classification �/
84 BOOL FindInstance(/� find an instance of this behavior �/

sir bhvrinst ��BhvrInst = NULL, /� return instance found �/
86 sir bhvrinst �LastInstance = NULL); /� continue search here �/

88 ERROR CreateBody(void); /� create a minimal behavior body �/
ERROR DeleteBody(void); /� delete the behavior body �/

90 /� (so that it becomes an external behavior) �/

92 ERROR MakeMainMethod(/� generates a main method (template) �/

Masterthesis of David Berner 72

SIR BHVR CLASS BehaviorClass, /� intended behavior class �/
94 sir bhvrinst �FirstBhvr = NULL); /� first subbehavior �/

g;
96

/���������������������/
98 /��� SIR Behaviors ���/

/���������������������/
100

class SIR Behaviors : /� behavior classes list �/
102 public SIR List<SIR Behavior> /� is simply a list of behaviors �/

f /� with additional methods �/
104 public :

106 //++++++++++++++++++++++++++++ API Layer 1 +++++++++++++++++++++++++++++//

108 SIR Behaviors(/� constructor #1 �/
sir behavior � FirstEntry = NULL);

110

˜SIR Behaviors(void); /� destructor �/
112

static sir behaviors � BuildList (/� build the list of behaviors �/
114 sir symbols �GlobalSymbols); /� (phase 1) �/

116 void FinishConstruction (void); /� perform construction phase 2 �/

118 sir behavior � Insert (/� insert a prepared element �/
sir behavior �Behavior);

120

//++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//
122

sir behavior �Find(/� find a behavior with this name �/
124 const char �Name); /� (returns NULL if not found) �/

g;
126

#endif /� INTREP BEHAVIOR H �/
128 /� EOF IntRep/Behavior.h �/

C.2 Interface-file of SIR Behavior

/� SWIG � Header�file for Python Wrapper
2 File : Behavior. i

Date generated : 12/5/2000 18:17h
4 Author: David Berner �/

6 %module Behavior

8 %f

#include ” IntRep/Behavior.h”

Masterthesis of David Berner 73

10 #include ”Global.h”
#include ” IntRep/Class .h”

12 %g

14 %import Class. i

16 enum SIR BehaviorClass /� supported behavior classifications �/
f

18 SIR BHVR EXTERN, /� external behavior (black box) �/
SIR BHVR LEAF, /� leaf behavior �/

20 SIR BHVR SEQ, /� ” clean ” sequential behavior �/
SIR BHVR PAR, /� ” clean ” concurrent behavior (par fg) �/

22 SIR BHVR PIPE, /� ” clean ” pipelined behavior (pipe fg) �/
SIR BHVR FSM, /� ” clean ” FSM�style behavior (fsmfg) �/

24 SIR BHVR TRY, /� ” clean ” exception�handling behavior (try fg) �/
SIR BHVR OTHER /� ” dirty ” compound behavior �/

26 g;

28 /��� type definitions ���/

30 typedef enum SIR BehaviorClass SIR BHVR CLASS;
typedef class SIR Behavior sir behavior ;

32 typedef SIR List<sir behavior> sir behavior list ;
typedef class SIR Behaviors sir behaviors ;

34 typedef ERROR (� sir bhvr fct)(sir behavior �, void�);
typedef class SIR Design sir design ; /� cyclic link �/

36

/��� class declarations ���/
38

/��������������������/
40 /��� SIR Behavior ���/

/��������������������/
42

class SIR Behavior : /� behavior class in hierarchy tree �/
44 public SIR Class /� and a class �/

f

46 public :
unsigned long UnitID;

48

// automatic template�path insert begin (list �element):
50

SIR Behavior �Succ(void); /� Successor �/
52 SIR Behavior �Pred(void); /� Predecessor �/

SIR Behaviors �Head(void); /� List head �/
54 void Remove(void); /� remove myself �/

56 // automatic template�path insert end (list �element)

Masterthesis of David Berner 74

58 SIR BHVR CLASS BehaviorClass; /� behavior classification (see above) �/
sir function �MainMethod; /� link to main method (or NULL) �/

60 sir statement �FirstBhvrCall ; /� link to first subbehavior call (or NULL) �/
sir statement �BehaviorCalls ; /� link to cmpnd.stmnt. with behavior calls �/

62 /� (if SEQ or PAR or PIPE, else NULL) �/
sir transitions � Transitions ; /� link to transitions (if FSM, else NULL) �/

64 sir exceptions �Exceptions; /� link to exceptions (if TRY, else NULL) �/

66 //++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//

68 static SIR Behavior �Create(/� create a new behavior �/
const char �Name, /� (returns NULL if SIR Error) �/

70 sir design �Design,
BOOL Internal = FALSE); /� default : without body �/

72

SIR Behavior �Copy(/� create an exact copy with new name �/
74 const char �Name, /� (returns NULL if SIR Error) �/

BOOL Strip = TRUE);
76

ERROR Rename(/� rename this behavior �/
78 const char �Name);

80 ERROR Delete(void); /� delete this behavior �/

82 SIR Behaviors �GetList (void); /� obtain a pointer to the behavior list �/
SIR BHVR CLASS GetClass(void); /� obtain this behaviors classification �/

84

BOOL FindInstance(/� find an instance of this behavior �/
86 SIR BhvrInst ��BhvrInst = NULL, /� return instance found �/

SIR BhvrInst �LastInstance = NULL); /� continue search here �/
88

ERROR CreateBody(void); /� create a minimal behavior body �/
90 /� (so that it becomes an internal behavior) �/

92 ERROR DeleteBody(void); /� delete the behavior body �/
/� (so that it becomes an external behavior) �/

94

ERROR MakeMainMethod(/� generates a main method (template) �/
96 SIR BHVR CLASS BehaviorClass, /� intended behavior class �/

sir bhvrinst �FirstBhvr = NULL); /� first subbehavior �/
98 g;

100 /���������������������/
/��� SIR Behaviors ���/

102 /���������������������/

104 class SIR Behaviors /� behavior classes list �/
f /� with additional methods �/

Masterthesis of David Berner 75

106 public :

108 // automatic template�path insert begin : (list)

110 bool Empty(void); /� test for empty list ? �/
unsigned int NumElements(void); /� number of list elements �/

112 SIR Behavior � First (void); /� first element (NULL if empty) �/
SIR Behavior �Last(void); /� last element (NULL if empty) �/

114 SIR Behavior �Previous(void); /� previous element (NULL if none) �/
SIR Behavior �Curr(void); /� current element (NULL if none) �/

116 SIR Behavior �Next(void); /� next element (NULL if none) �/
SIR Behavior �Prepend(SIR Behavior �Elem);

118 SIR Behavior �Append(SIR Behavior �Elem);
SIR Behavior � InsertBefore (SIR Behavior �Elem,SIR Behavior �Succ);

120 SIR Behavior � InsertAfter (SIR Behavior �Elem,SIR Behavior �Pred);
SIR Behavior �Remove(SIR Behavior �Elem);

122 SIR Behaviors �Concat(SIR Behaviors �Appendix);
SIR Behaviors �Precat (SIR Behaviors �Prependix);

124

// automatic template�path insert end (list)
126

//++++++++++++++++++++++++++++ API Layer 2 +++++++++++++++++++++++++++++//
128

sir behavior �Find(/� find a behavior with this name �/
130 const char �Name); /� (returns NULL if not found) �/

g;

C.3 SWIG interface-file generator: template.py

template .py script for automatical generation of headerfiles for SWIG
2 # David Berner 11/30/2000

4

import string , sys , time
6

def find template ():
8 tm = time. localtime (time. time ())

tm str = str (tm[1])+’ /’ +str (tm[2])+’ /’ +str (tm[0])+’ ’ +str (tm[3])+’ :’ +str (tm[4])
10 print tm str

outfile . write (’ /� SWIG � Header�file for Python Wrapper nn File: ’+sys.argv[2]+’ .inn Date generated: ’ +tm str+’hn
12 ln= infile . readline ()

outfile . write (ln)
14 print sys . argv

while not(ln == ’ ’):
16 slist = ln . split ()

if len (slist) > 1 and slist [0] == ’ class ’ and slist [2] == ’ :’ :
18 # sir type = slist [1]

cl type = get cl (slist)

Masterthesis of David Berner 76

20 # patch(cl type , sir type , ln)
ln= infile . readline ()

22 outfile . write (ln)
a=0

24

def patch(cl type , sir type , ln):
26 ””” Remove the inheritance�statement and insert adapted method�prototypes”””

print ’ nnpatching ’ , cl type , ’ in class ’ , sir type , ’ ’
28 while not (ln . split ()[0] == ’ public :’):

ln = infile . readline ()
30 outfile . write (ln)

if cl type == ’ list �element’ :
32 outfile . write (’ nn // automatic template�path insert begin (list �element):nnnn’)

outfile . writelines (sir type , ’ �Succ(void); /� Successor �/nn’)
34 outfile . writelines (sir type , ’ �Pred(void); /� Predecessor �/nn’)

outfile . writelines (sir type , ’ s �Head(void); /� List head �/nn’)
36 outfile . write (’ void Remove(void); /� remove myself �/nn’)

outfile . write (’ nn // automatic template�path insert end (list �element)nnnn’)
38

elif cl type == ’ list ’ :
40 outfile . write (’ nn // automatic template�path insert begin : (list)nnnn’)

outfile . write (’ bool Empty(void);ntnt /� test for empty list ? �/nn’)
42 outfile . write (’ unsigned int NumElements(void);nt/� number of list elements �/nn’)

outfile . write (sir type [:�1]+’ � First (void);n tnt /� first element (NULL if empty) �/nn’)
44 outfile . write (sir type [:�1]+’ �Last(void);n tnt /� last element (NULL if empty) �/nn’)

outfile . write (sir type [:�1]+’ �Previous(void);n t /� previous element (NULL if none) �/nn’)
46 outfile . writelines (sir type [:�1], ’ �Curr(void);n tnt /� current element (NULL if none) �/nn’)

outfile . writelines (sir type [:�1], ’ �Next(void);n tnt /� next element (NULL if none) �/nn’)
48 outfile . writelines (sir type [:�1], ’ �Prepend(’ , sir type [:�1], ’ nt �Elem);nn’)

outfile . writelines (sir type [:�1], ’ �Append(’ , sir type [:�1], ’ nt �Elem);nn’)
50 outfile . writelines (sir type [:�1], ’ � InsertBefore (’ , sir type [:�1], ’ nt �Elem,’ , sir type [:�1], ’ �Succ);nn’)

outfile . writelines (sir type [:�1], ’ � InsertAfter (’ , sir type [:�1], ’ nt �Elem,’ , sir type [:�1], ’ �Pred);nn’)
52 # outfile . writelines (sir type [:�1],’ � Remove(’ , sir type [:�1],’ � Elem);nn’)

the remove�method exists two times , one is removed :)
54 outfile . writelines (sir type [:�1], ’ �Remove(’ , sir type [:�1], ’ �Elem);nn’)

outfile . writelines (sir type , ’ �Concat(’ , sir type , ’ �Appendix);nn’)
56 outfile . writelines (sir type , ’ �Precat (’ , sir type , ’ �Prependix);nn’)

outfile . write (’ nn // automatic template�path insert end (list)nnnn’)
58

def get cl (slist):
60 ””” Determine if the class is inherited fom a template�class and which ”””

cl tp =0
62 while not (slist [0] == ’ f’):

ln= infile . readline ()
64 slist = ln . split ()

if (not(string . find (ln , ’ SIR ListElem<’) == �1)):
66 cl tp =’ list �element’

elif not (string . find (ln , ’ SIR List<’) == �1):

Masterthesis of David Berner 77

68 cl tp =’ list ’
else :

70 outfile . write (ln)
return cl tp

72

74 if len (sys . argv) > 1:
infile = open(sys . argv [1], ’ r ’)

76 outfile = open(sys . argv[2]+’ . i ’ , ’ w’)
a = find template ()

78 infile . close ()
outfile . close ()

80

else :
82 print ”nnusage: python template .py header�file module�name”

