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Abstract

In this paper we show the usefulness of an agile formal method (named XFM) based on extreme pro-

gramming concepts to construct abstract models from a natural language specification of a complex

system. In our experience, major challenges faced by industrial formal verification engineers are two

fold: (i) Making sure that the natural language specification of a system is translated into a sufficiently

complete set of formal properties to be used in model checking of an implementation instance, (ii) In

conformance based formal verification using abstraction techniques, creating an abstract model that

satisfies all formal properties intended in the natural language specification. Most of the time, it is hard

to validate the sufficiency/completeness of the property suite developed from the natural language, or

to make sure that the abstract model is constructed correctly. By “correctly” we mean that the set of

behaviors of the abstract model is not only a superset of the set of behaviors of an implementation, but

also a subset (in the best case, equal) to the set of behaviors intended/allowed by the natural language

specification. Our XFM based methodology addresses these problems. It is based on building a model

in PROMELA along formal linear time properties that are validated with the SPIN model checker. We

illustrate the flow on an extensive example of a Smart Building control. It features intelligent control

and interaction of illumination, heating, cooling, safety, security, and appliances. We find that this

methodology not only constructs abstract models in shorter time than the time taken in constructing ad

hoc abstract models from implementation or specification, but also provides models which are construc-

tively correct and closer to the intended specification.
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1 Introduction

Today’s way of building formal models can be compared to what programming was fifteen years ago.

From a spoken specification an ad hoc abstract model is built, then formal properties are developed to

check if the model satisfies the specification. Figure 1 displays the overall design flow. A formal model

checker is used to verify properties in the model. There are several drawbacks in this approach. One

drawback is that the ad hoc building of both the model and the properties is error prone and the effort of

model building and debugging grows exponentially along with the size of the model. Another foreseen

problem is that there is no way of guaranteeing the inclusion of all properties, some of which may be

overlooked, thus reducing the significance of the model. Also, if a property fails, it is tedious to debug

the model although few indications do exist that tell us about the location of the bugs. Finally, there is

a tendency that the model will include more behavior than its specification will allow. Implementation

details can get into the abstract model, that make the model have unwanted properties and hence the

implementation being checked against it may have these as well. The implementation details in the

abstract model may also introduce unwanted complexity and may later cause problems in conformance

checking.

English


Specification


Linear Time


Properties


ad hoc Abstract


Model


Model


Checking


Figure 1. State of the art to capture a formal model

In [8] we developed Extreme Formal Modeling (XFM) to overcome the problems and restrictions of

common methodologies to build formal models. XFM exploits the advantages of Extreme Programming

(XP) in order to capture formal specification into abstract models. Figure 2 presents XFM’s incremental

approach to formal modeling. From the English specification, we first derive a simple formal property

and then build an abstract model for this property. This is then model checked to verify whether the

property holds for the model. Once the property is satisfied, we take a second property, extend the

model according to this property, and model check for both properties. This procedure is repeated until

the abstract model contains all behavior from the English spec. Simulating the model is a way to ensure
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that all properties defined in the specification have been accounted. The controlled and incremental

model building results in a compact, structured abstract model. Whenever a property fails to validate, it

usually is straightforward to find the bug as it must be related to the latest additions. The complete effort

of modeling and bug fixing grows linearly along with the size of the model.

English


Specification


Property


1

Model


Model Check


Property


1+2

Model


Property


1 + 2 + … + N

Final


Model


Model Check


Model Check


Figure 2. Capturing a formal model with XFM

To put this methodology to work we chose SPIN and PROMELA [15] as a vehicle because we want

to be in the Linear Time properties framework rather than branching time. SPIN is probably the most

popular model checker for linear time but we also used it because it can not only verify properties but

also simulate the model, which significantly supports the debugging process. Other than that we use

the tool LTL 2 BA [4] to visualize the LTL properties as finite state machine (FSM). This helps to

interactively create LTL properties but also to detect errors. In order to show and explore the power of

this new methodology, we develop the control of a Smart Home system which is an important example

for ubiquitous computing.

1.1 Motivation for the Smart Home example

As technology advances, the cost and size of electronic components are becoming cheaper, smaller,

and consume less power. As a result, these components are becoming an increasingly important part of
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our environment. Ubiquitous computing is no more science fiction, but instead an emerging technologi-

cal area. There are electronic devices such as sensors, cameras, personal assistants, and microprocessors

that provide us with information and transparently perform tasks without our knowledge of its working.

This is what makes our environment “smart”. A Smart Home uses these techniques to make living condi-

tions more convenient and adapts to its residents’ needs. A truly “smart” home does not directly burden

its residents with technology, but reduces the presence of technology by automating tasks of everyday

life. However, for “smart”-ness, the technology must be constructed such that the resident is unaware of

the complex technology behind the automation. So, one important objective of a Smart Home is to take

charge of obvious and repetitive tasks. However, complex tasks such as learning the resident’s working

schedule in order to automatically adjust the room temperature according to their arrival from work can

also be performed. Although the need for explicit control is taken away, the resident has supervisory

control over the technology to accommodate for changes that may occur in their schedules. For example,

sudden changes in work schedules need immediate alterations to the technology’s settings. Hence, it is

important build a system where the user can change the setting/options according to his/her preferences

at any time without much difficulty. Therefore, a good user interface is an important part of the Smart

Home that allows the user to set the preferences accordingly.

It is desirable for a person that the environment is aware of his/her presence, acts according to his

preferences, and is able to communicate with him easily in many ways. But while people are used to

and accept that programs on their PC sometimes crash or behave inadequately, it is unacceptable that

their home environment shows any unwanted behavior. It is unthinkable that a house refuses access to

its resident or that vital functions such as heating, lighting, or the security system do not behave the way

that they should. On account of this the development of the control for a Smart Home not only has to be

done with diligence, but it has to include a methodology that completely rules out such failures. Extreme

Modeling is a methodology that not only provides for a correct model of the system, but also makes the

process of model-building and capturing of formal specifications faster and more intuitive.

1.2 Organization

This paper is organized as follows: In Section 2, we discuss related work, in Section 3 we present

our modeling approach, the tools, and how they are used. Section 4 involves the description and imple-
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mentation of the case study of the Smart Home. It includes all the important properties that are verified

and how we used Extreme Modeling to construct the abstract model of the Smart Home. Finally, we

conclude the paper with Section 5.

2 Related Work

Efforts are being made to use the methodology of extreme programming by many people to build

stronger and powerful systems, but this approach has not been used much for formal modeling and

verification. Some related work in the field of connecting formal methods and XP had been done by

Herranz and Moreno-Nacarro in [14, 12, 13]. They describe the integration of some XP practices to for-

mal methods using the SLAM software tool [5]. Their environment generates sequential programs from

formal expressions using an assertion based JAVA development framework. While our work involves the

use of XP to model complex concurrent hardware systems their approach is directed towards sequential

software programs. General information about XP and agile techniques can be found in [18, 3, 7, 17].

In this paper, we formally model a Smart Home system and verify its properties. A lot of research

[9, 16] as well as implementation models of Smart Homes exist. The OXIGEN project of MIT [6] focuses

on pervasive human centered computing and an intelligent room. For our example model, we borrow

parts from prototypes such as the Cisco Internet Home [2] or the Adaptive House of the University of

Colorado [1]. The Internet Home built by Cisco involves security, remote monitoring, and control of

appliances. The Adaptive House built by the University of Colorado also contains appliances, enter-

tainment centers as well as temperature and lighting control units. However, it has the approach of a

non-invasive technology, where usage patterns are learnt over time and then successively automated.

This is in contrast to the Cisco Internet Home where the control is fixed and the focus is on the ability

to remotely control the home environment. Our model of the Smart Home features some of the above

mentioned properties and exemplifies the usage of formal and agile methods for such high reliability

applications.
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3 Modeling Approach

3.1 Linear-Time Properties

Linear Time Logic (LTL) is the leading specification language technique for temporal rules [10].

It extends propositional logic with the four operators “always” (condition holds always in the future),

“eventually” (condition holds sometime in the future), “next” (condition holds in the next cycle), and

“until” (condition A holds until condition B, afterwards do not care). All LTL operators are listed in

Table 1. As to the expressiveness of LTL, it is complete with respect to first order logic [11]. Temporal

expressions that cannot be expressed in LTL, can be provided to SPIN in the form of a never-claim

automaton.

Table 1. LTL Operators

!A negation

A→B implication

A ↔ B equivalence

A && B and

A || B or

[]A Always

A U B until

<> A eventually

X A next

Testing for the completeness of a LTL property can be one of the challenges of formal verification.

Small changes in the LTL property, like misplacement of a parenthesis can change the complete meaning

of the property. For example [](a→<> (b U c)) represents a simple 2-state automaton, saying that

always if a occurs, eventually b will occur and stay true until c occurs. If we move the parenthesis

before the <>, it is a 7 state automaton, and it is not easy to describe its behavior. Even if these kinds

of mistakes are hard to detect, it is especially important that properties are correctly defined before

running the model checker to verify it. If we check the model against a wrong property, it is highly

probable to introduce more bugs into the model. A tool called LTL 2 BA [4] (LTL to Büchi automata)

generates a Büchi automaton representing any LTL expression. This visualization is instrumental in

verifying that the expression matches the specification. LTL 2 BA also generates PROMELA code from

an LTL expression. Therefore it could - in theory - be used to obtain the abstract model directly and
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automatically from the LTL properties. However, in practice this does not work since first of all it is not

possible to describe some implementation details such as initialization of variables and changing state

variables and second, as it is possible to concatenate several properties with && this is not practical for

a large number of properties since the resulting automaton may be very big. This is because LTL 2 BA

is building a monolithic automaton, where the concurrency of independent parts is not captured. For

these cases it is better to keep independent processes in the model as this relects better the structure of

the system.

3.2 Extreme Formal Modeling

Rules of XFM are based on rules of XP. Many of the XP rules can be applied directly and successfully

in XFM. Forinstance one of the main XP rules is to write tests before the actual code. In XFM this rule

maps to specifying the LTL property before writing the abstract model. Another important XP technique

is to add functionality as late as possible, keeping the model simple for as long as possible. Iterations are

small steps in the development process. At the start of each iteration the goals are identified and written

down in the form of “user stories” - individual cards that point out specific implementation details and

requirements. These user stories act as a detailed guideline for the programmer. To refactor problems

as much as possible, to update tests after a bug is found, and to work in pairs are also principles that

are as beneficial to the capturing of formal methods as they are for common programming projects. The

benefit of other XP techniques such as a stand up meeting in the mornings, collective code ownership

and moving people around depends on the type of the project, the size of the team, and on personal and

corporate preferences.

On the other hand, similar to XP, Extreme Formal Modeling also involves initially writing English

specifications which can be thought of as user stories. These user stories are further broken down to

Linear-Time properties which are checked for correctness by tools that convert these to automata. These

properties are checked if they express what is intended, then a model is constructed based on these prop-

erties. Once the abstract model is constructed and the property is satisfied, we take the next property

and follow the same procedure. If the property is found to be unsatisfied, we can locate the error with

the help of the trace file generated by the model checker, fix the bug and rerun verification. Once verifi-
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cation is successful we pick the next basic user story, transform it into an LTL property and extend the

model obtained from the previous property to satisfy this one as well. At each incremental step, all the

properties previously verified are checked as well to ensure that the model maintains the behavior spec-

ified by all the properties. This procedure is repeated until the abstract model contains all the specified

behavior from the English spec. We can also ensure that all functionalities of our English specification

are incorporated in our final model by simulating the model. If a certain functionality is found missing,

we identify the corresponding LTL property and extend the model accordingly. After correct simulation,

the model and the list of LTL properties should be complete. This controlled and incremental model

building procedure results in a compact, structured abstract model. This abstract model does not contain

any unnecessary behavior.

The major benefits of our approach are the speedup of the model-building process and the high quality

of the model compared with the traditional approach. Since we handle small steps, each step will add

limited functionality to the model, so the debugging process is much more directed.

Figure 3. Modeling process (a) and modeling result (b)

Another benefit is that our model is built using the properties. Hence, it does not include much

unintentional details. Figure 3 illustrates how the amount of behavior for the properties and the abstract

model develop during the capturing process. At any point, the behavior of the formal properties is more

general than that of the abstract model. At the beginning, however, they are both much more general than

the behavior of the specification. In each iteration step their behavior is confined by adding additional
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properties and details to the model. Obviously the behavior of the specification does not vary during this

process since the specification is not altered. Ideally, in the end all three behaviors are identical with

the specified behavior, but in practice there will always be a small gap. However this gap will be much

smaller for the XFM methodology than for the traditional approach. The fact that the behavior of the

model is closely linked to the properties, entails a close to complete set of properties once the model is

complete; simulation of the model will help reveal missing functionality. In the conventional approach,

however, the model tends to contain much more functionality than specified, but less properties than

needed as there is no mechanism that guarantees the exposure of all properties of the spec. The overall

time to build and validate the model is substantially less, especially for large systems. This is mainly due

to the iterative aspect. Since the model is checked for each property after each iteration, the time needed

to debug is less. This is in contrast to debugging the entire model at once for satisfying all properties

as per the traditional approach. For example if ad hoc models are built, they are usually monolithic,

but with XFM, complex models get broken down to small problems and can be built as concurrent state

machines more easily. The time required to build models using this methodology grows linearly in the

size of the model, whereas the design effort in a conventional methodology grows exponentially with

the size.

4 The Smart Home Case Study

4.1 General Properties

There are many approaches to what a Smart Home looks like and to what it should be able to do. The

most important categories include the control of lighting, temperature, security, and safety. But some

also include other features such as entertainment and specific smart appliances such as a smart fridge or

a smart microwave. Systems also differ greatly in their level of awareness of the resident, where a higher

level of awareness enables the system to adapt to personal preferences of different family members

depending on their current location in the house and the time of day. Finally a big design decision is the

level and way of interaction with the system. This may be as simple as a central control console or it

can be done with multiple ways such as portable devices anywhere in the house, voice recognition, and

remotely over the Internet and by phone.
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4.2 Overall English Specification

The example of a Smart Home we are describing here includes all basic functionalities as well as

extended features featuring advanced control. We describe the functionalities for the different categories

although it is not possible to do a clear separation as some functions require interaction of several cate-

gories.

4.2.1 Lighting.

Lighting control will illuminate rooms depending on the the brightness outside. There are light sensors

at every window. If during the day it is brighter than a pre-defined value, light in the room will switch off.

Once it gets dark, the light will switch on. Obviously rooms without windows such as the bathrooms do

not have light-sensors. Every person carries an RFID (Radio Frequency identification) in their jewelry

or shoes depending on the type of RFID, and the lights in the house are controlled depending on the

presence of persons in the rooms. If a room has not been used for more than 10 minutes, light will

switch off. In addition for some rooms such as the living rooms and the bedrooms, the resident can

choose an intensity from 0 to 100 percent. Whenever he comes back to the room, light should switch

to the previous selected intensity. However, the next evening, as the light switches on when it gets dark

outside, it should always be on 100 percent intensity.

4.2.2 Temperature Control.

Temperature control involves temperature sensors in every room, and the control of heating and air

conditioning. For each room, three temperature levels can be defined: comfort level, power-save level

and the vacation level. The comfort level is the temperature the resident likes to have when the room is

being used. The second level is the power-save level that defines the temperature for a room that is not

being used. It saves power by lowering AC and heating, but still keeping the temperature at a level so

that the room can reach comfort level in a reasonable time. The vacation level defines the temperature

for a room that is not used for a longer period of time. In the vacation level, only heating is operated to

prevent the room from freezing. Whenever a person is detected in a room, the system goes to comfort

level. If a room has not been used for a certain time for example 2 hours, temperature will be lowered to
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power save level. If the room has not been used for say more than two days, it will fall back to vacation

mode.

4.2.3 Security.

Security uses motion sensors in every room to detect if someone is present in a room or not. If there

is motion detected but no person of the household identified in the past 5 minutes, an alarm signal is

issued. When the alarm signal is issued, the safety alarm starts off and a message is sent to the resident’s

cellphone along with an email. If the alarm is not turned off within next 5 mins, a signal is sent to the

security for help.

4.2.4 Safety.

Safety is dealing with malfunctioning devices which may cause unforeseen hazards to the house such as

fire, flooding etc. It may also involve mistakes made by the residents which may cause such an event.

One of the main components of safety is the smoke detectors which can be installed in every room to

monitor smoke levels. Also it checks if the temperature is in a safe range. Once a certain safety constraint

is violated, a safety alert is raised and displayed on the screens available in every room. Also a message

is sent to the residents phone and email box. If a hard safety constraint is violated, fire extinguishing

sprinklers are activated and the fire department is notified.

4.3 Capturing of the Formal Model

In order to capture the formal model we identify a basic functionality of the system, specify a formal

linear time property for this functionality and then build a model that satisfies this property. Our first

property states that if it sufficiently bright outside, the light will never switch on in the room. Table 2

shows the corresponding LTL property. To make sure that this property expresses what we intend to

express, we enter the LTL formula into the LTL 2 BA tool in order to get the corresponding automaton.

Figure 4(a) shows the FSM corresponding to property 1 and Table 3 lists the definitions necessary to

verify it with SPIN. Since this property is quite simple it is not difficult to see, that it expresses the correct

behavior, but for more complex properties it is important to make sure they are correct before checking

the model for it. Now we start writing a model in PROMELA that satisfies exactly this one property.
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Table 2. LTL Properties for the Smart Home model

1 If light is over 500 lumen light will not switch

on

[](klact → kbright)

2 If the room is not used for more than 10 min-

utes, the light is always off

[](kaway10m → !klit)

3 If there is light in the room, either it is suffi-

ciently dark outside and someone is using the

room or someone has been in the room in the

last 10 minutes

[](klit → (khere10m && klact))

4 If the light is off, either it is sufficiently bright

already, or it is just getting sufficiently bright or

nobody has been in the room recently.

[](!klit → (!klact || X !klact || kaway10m))

5 If no identified person is in the room and there

is motion the alarm is triggered

[](((kempty && kmotion) U alarm) || !kmo-

tion || (kmotion && !kempty))

6 Temperature is at comfort level if the room has

been used within the last 15 minutes

[](ktcomfort → khere15m)

7 Temperature is at power save level if the room

has not been used for more than 2 hours.

[](ktpowersave → kaway2h)

8 Temperature is at vacation level if the room has

not been used for more than 2 days.

[](ktvacation → kaway2d)

9 At dawn (when the light gets active) intensity is

always at 100 percent.

[]((!llact U lintmax) || llact)

10 If there is some smoke or a high temperature in

any room next a firehazard is issued

[]((lowsmoke || temphigh) → X safetyhazard)

11 If there is heavy smoke or a very high temper-

ature in any room next the sprinkler system is

started

[]((heavysmoke || tempveryhigh) → X spkl)

It is important to try not to introduce functionality early, however, the model always contains parts that

have no correspondence in a formal property. This is because certain things such as initialization of

variables and changes of state variables can not be expressed in linear time properties. Figure 5 shows

the PROMELA model for the first property. It features the initialization process init and the process

KLuminosity, where the variable kactive is set according to the current luminosity. In order to keep the

state space of the model small, we only consider three values of brightness. All other values will not

result in any change of kactive.

Only after the first property is verified, we come up with a second property. This property states that

if the room has not been used for more than 10 minutes, the light is always off. The LTL property in

Table 2 is similar to property 1. A process KPsense has to be added to to model that detects if a person

12



Table 3. Definitions for the LTL Properties

1 #define kbright klum < 500 Brightness level in the kitchen is under 500 lumen

2 #define klact klactive True if kitchen light can be switched on, false if

bright enough

3 #define klit klight Output for the kitchen light.

4 #define ktcomfort ktl==comfort Temperature in the kitchen set to comfort

5 #define ktpowersave ktl==powersave Temperature in the kitchen set to power save

6 #define ktvacation ktl==vacation Temperature in the kitchen set to vacation

7 #define kempty kpsens==Empty No person is in the kitchen

8 #define alarm alert

9 #define khere15m kcount<16

10 #define khere10m kcount<11 Kitchen has been used within the last 10 minutes

11 #define kaway10 kcount > 10 Kitchen is unused for more than 10 minutes

12 #define kaway2h kcount > 15 Kitchen is unused for more than 2 hours

13 #define kaway2d kcount > 20 Kitchen is unused for more than 2 days

14 #define kpsense !(kpsens == Empty) No person detected via RFID

15 #define kmotion kmot The motion detector

16 #define lowsmoke

((ksmoke==LOW)||(lsmoke==LOW))

There is some smoke in a room

17 #define heavysmoke

((ksmoke==HIGH)||(lsmoke==HIGH))

There is heavy smoke in a room

18 #define temphigh

((ktemp > 80)||(ltemp > 80))

The temperature in a room is unusually high

19 #define tempveryhigh

((ktemp > 100)||(ltemp > 100))

The temperature in a room is very high

20 #define spkl sprinkler The sprinkler system

21 #define lintmax lint == 100 Full light intensity in the living room

is in the kitchen and it counts the minutes since the kitchen has been used last. If nobody has been there

for more than 9 minutes, the light is switched off.

Property 3 describes that if there is light in the kitchen, it must be sufficiently dark outside and some-

one used the kitchen within the last 10 minutes. The LTL property is quite easy to understand. For the

formal model, we only have to add small changes to reflect this property. Basically we have to make sure

that the light is dependent on kactive. Once these changes are performed, the property verifies and we

determine the next property. Number 4 defines when the light is off in the kitchen. If the light is off, that

means, that either nobody has been using the room recently or it is sufficiently bright without light. This

property is a good example for the interactive model building process. While implementing the changes

in the model we realize that when it is just getting bright in the morning, the light is switched on just
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Figure 4. FSMs of properties 1 (a) and 4 (b)

before klactive is switched off. This will cause the property to fail. Now if we inverse the assignments,

property 3 will fail. This is why we extend the property including instants where in the next state klactive

is true. To make sure, that this actually happens in the next state we have to enclose the two assignments

in an atomic statement. Figure 4(b) shows the corresponding FSM generated by LTL 2 BA. It has very

few transitions but close examination confirms that the automaton follows our intention. When building

the properties independent from the model, such details get omitted. This will cause, the property to fail

and it may be time consuming to locate the error.

As the model now contains most of the lighting functionality, we add a security property next. Prop-

erty 5 exploits the motion sensors. When no person is identified in the room with the a valid RFID and

there is motion detected an alarm is activated. The alarm signal might ring a bell and send a text message

to the residents cell phone and email. As the alarm signal can only occur after the condition is detected,

it is most appropriate to use the until operator U for this property. Table 2 shows all the LTL properties.

The implementation in the formal model does add some lines to the KPsense process, but it does not

incur any fundamental changes.

Next, we consider the temperature control mechanism. As there are three basic properties that are

similar and closely related, we decide to add all three properties in one iteration step. The properties say

that the AC/Heating system has three modes of operation, each having a temperature level is assigned.

The first level is the comfort level, it defines the temperature when the room is used. Then there is

a power save temperature that is active whenever nobody has been using the room for more than two
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bool kactive;

int klum;

proctype KLuminosity()

{

do

:: klum < 400 -> klum = 200; kactive =1

:: (100 < klum) && (klum < 700) -> klum = 400; kactive =0

:: klum > 700) -> klum = 600; kactive =0

od;

}

init

{

klum = 200;

kactive =1;

run KMotion();

}

Figure 5. Promela code for first property

hours. And finally there is a vacation mode that is active when a room has not been used for more than

two consecutive days. The resulting LTL properties are simple (Property 6, 7, 8). In the PROMELA

model there is already a counter that counts the time since the room has been used last so we have again

few changes in the model. After modifying the model, small corrections have to be performed when

checking all previous properties.

Until here, our model only comprises one room, the kitchen. As we have sensors for every room, most

of the control is also based on the room-level. All properties so far can be replicated for any other room.

The same is valid for the model. This makes our model modular in approach. However, in some rooms

there are additional functions that should be added. For example we want to control the intensity of the

light in the living room and in the bedrooms. Intensity in the bedroom will be set to zero, when going to

bed and in the living room it may be set to a desirable for example for watching movies. The fact alone

to have a switch that controls the intensity will result only in trivial LTL properties, and therefore is not

worth checking for. But in the specification, it says, that if it gets dark the next day, intensity should

always be at 100. This requirement is expressed in LTL property 9 (see Table 2). To reflect this in the

model, we first of all have to create the living room. This is done by copying all kitchen processes and

rename them and the variables. In addition to KPsense we get LPsense and so on. Then we replicate

all LTL properties and the definitions and check all these properties as well as the ones for the kitchen.

Once this is done a new process LIntensity is added, that switches between different levels of intensity
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if it is sufficiently dark in the living room. In order that property 9 verifies, we change the intensity back

to 100 as soon it gets bright enough outside, as soon as lactive is turned to zero.

As we have several rooms now, it makes sense to introduce functions that spawn several rooms.

Safety properties such as the detection of smoke or hazardous temperatures are properties that concern

the whole house. In order to ensure the safety in the house, we add two properties, that depend on

the smoke detectors and on the temperature sensors. Property 10 issues a safety hazard when a certain

amount of smoke is detected or if the temperature in any room is high or low. A safety hazard will notify

the resident about the incident but not take any immediate action yet. Once the intensity of the smoke

reaches another critical level, the sprinkler system is launched and the fire fighters are notified. In the

model, these changes induce the creation of two small processes that monitor the temperature and smoke

sensors in all rooms.

5 Conclusion

In this paper we demonstrate the usage of the XFM methodology developed by us in [8] for the formal

modeling of a large control application for a smart building. It focuses on the concept of incremental

formal modeling based on properties from the English specification. Each property represents a specific

behavior based on which the abstract model is constructed. The incremental approach used in the paper

guarantees that the constructed abstract model not only satisfies all properties, but also ensures that it

contains only little unwanted behavior that might cause the implementation to fail at a specific step.

Since XFM involves an iterative technique, the evolving abstract model facilitates debugging whenever

a property is found unsatisfied. In each iteration step the behavior is confined by adding additional

properties and details to the abstract model. The fact that the behavior of the abstract model is closely

linked to the properties entails a close to complete set of properties once the abstract model is complete.

In the conventional approach, however, the abstract model tends to contain much more functionality

than specified, but less properties than needed as there is no mechanism that guarantees the exposure

of all properties of the spec. The overall time to build and validate the model is substantially less,

especially for large systems due to the iterative modeling aspect. We chose the SPIN model checker as

modeling environment not only because it is one of the most popular model checkers in todays modeling

of concurrent systems, but also due to the fact that it comes with a convenient simulator to debug the
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model when properties fail.

The modeling example of the Smart Home demonstrates the power of the approach, and even if there

exist more sophisticated smart spaces, we succeeded in building a reasonably complex smart environ-

ment with little effort. Yet most important is not the large amount of functionality and the different levels

of interaction, but the confidence that this model fully complies with the specification without containing

much superfluous behavior.
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