IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 1

Validating Families of Latency Insensitive

Protocols

Syed SuhaibStudent Member, IEEE,
Deepak MathaikuttyStudent Member, IEEE,
David BernerStudent Member, IEEEBNnd Sandeep Shukl&enior Member, IEEE

Abstract

With increasing clock frequencies, the signal delay on samerconnects in an System On Chip
(SoC) often exceeds the clock period, which necessitatescy insensitive protocols (LIR<Jorrectness
of a system composed of synchronous blocks communicatiagLifs is established by showing
latency equivalencbetween a completely synchronous composition of the blozkd the LIP based
composition. Every time a new LIP is conceived, they needaalébugged and then proven correct.
Mathematical theorems to establish correctness, thowggaet, are error prone, and tedious to create
for every new variant of LIPs. In this work, we present valfida frameworks for families of LIPs,
both for dynamic validation, useful for early debug cyclasd formal verification for formal proof of
correctness. This can be a useful framework in the hands sifukers trying to create new LIPs or to

optimize existing ones for design convergence.

Index Terms

Simulation, formal verification, long interconnects, ladg insensitive protocols, relay station, split-

ter, merger, verification framework.

I. INTRODUCTION

I N the current and upcoming System-on-a-Chip (SoC) desigmsllectual property (IP)
reuse is gaining increasing importance. Reusing pretagisbmponents such as memories,
processor cores, and dedicated hardware blocks chosendrof® library seems to be the

only way to mitigate the productivity crisis and shorteniimge-to-market cycles. Therefore, a

This work was supported by the NSF project CRCD/EI 0417340 @EBR-0237947

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 2

significant part of the SoC design problem is in the correntpasition of these existing IP blocks
[1]. However, the ever increasing clock frequencies irmatk the synchrony assumption between
IP blocks due to long interconnects. As the clock frequenkgve crossed multi giga-hertz range,
the clock period is too short for two communicating compdaea exchange information across
a long interconnect within such small clock period. Thisesduse some interconnects are longer
than the distance a signal propagates during a single chdk ¢2]. This problem has recently
come into focus through a series of papers [2], [3], [4], [6], [7], [8]-

Although, a number of protocols, termed as Latency InseesRrotocols (LIP)s have been
published in the literature, no formal framework has beemaitad to validate these protocols. The
reason why one needs a framework where variants of thesecptstcan be quickly validated
either through simulation or through model checking is dkWs: These protocols are going
through a continuing evolution phase. For example, [6]napts to optimize and improve the
protocols described in [2], [3], [4], [5] to obtain a more eiint and simpler protocol circuitry.
In [7], a new protocol for pure Globally Asynchronous and albg Synchronous (GALS) systems
based on the earlier LIPs has been proposed. In [8], furihgslification that obviates the use
of specific protocol circuitry has been proposed. Althoughdffers a mathematical proof of
correctness of their version of LIPs, when optimizationsxiensions are made in the subsequent
works, no such formal proof is usually offered. Due to thetkati@s involved in the optimizations,
it is plausible that the newly invented LIPs have serious $lawe have experienced this in our
attempts to optimize Carloni’s protocol [3], [4]. As a reswe felt that there is a need for a
framework where these protocols can be quickly modeled atidated. This is the motivation

for the current paper.

A. Solving the Long Interconnect Problem

Several approaches have been proposed to deal with theepradfl long latencies in global
physical chip interconnects in SoC design. One is a famillathcy insensitive protocols (LIP)
as in [5], where all modules are encapsulated with contgitlblocks and possibly relay stations
on the interconnects to make these interconnect delayspaaent to the actual IPs. Another is
to create packet based Networks on a Chip (NoC)s, also &tgdtinterconnect latencies [9].

However, designing the composition of IPs necessitatedimersent based design flow. In

such a design flow, a synchronous model [10] of the system edwulit where all interconnect

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 3

latencies are assumed to be negligible. This follows froesynchrony hypothesis used in clock-
synchronous hardware design, where, computation and caoioation latencies are negligible.
From this synchronous model, necessary refinements are tmalde design to render the design
latency insensitivgLIl). The correctness criteria is that the LI design lagency equivalento
the synchronous design. Two signals are said tdabency equivalenif the sequence of valid
or informative events on the two signals are identical. In other words, ibbhserver observes
the order of events on two signals, while discounting ‘erhptyents, the two signals will look
the same. Since processes can be thought of as consumerahatqr of events on signals,
the same notion can be extended to systems. Two system navdelgtency equivalent if their
outputs are latency equivalent given both are subjectedesame (or latency equivalent) input
sequences. Latency equivalence is formally defined in teknpinary definitions in Section IV.

There are many ways one can ensure correctness of LIPs, ays$teims. Dynamic validation
can be used to show that a system using LI techniques is laggquavalent to the completely
synchronous model of the system which assumes zero delaggoimation. Although dynamic
validation is appropriate for flushing out protocol designoes, such validation only covers
certain input sequences. Therefore, formal verificaticm msore desirable validation mechanism.
In order to formally verify such protocols, the LI system aslivas the synchronous idealization
have to be modeled formally, and the latency equivalencedas captured as a formal property.
However, our experience is that model checking is very nesoaonsuming [11]. Another way
to confirm the correctness of such an implementation is tdhemaatically formalize it, as done
in [5]. But mathematically proving the equivalence of tws®ms is a challenging task and not
beyond mistakes. It requires complex mathematical prdwtsdre not straightforward to follow
by others who want to confirm them, hence every new variatiohlBs cannot be validated
easily using mathematical proof techniques. The best way ovide designers with an easy
to use framework to model and validate their protocols.

In this work, we propose a framework for validation of suclsteyns. We target formal
verification as well as simulation based techniques to yeéhé LI systems in our framework.
For formal verification, we use the SPIN model checker tofydhie correctness of an LI system,
whereas for the simulation based technique, we use a funattprogramming based technique

to validate the LI system. We compare and contrast the twionigoes and find that the SML

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 4

based simulation for validation is a more convenient way abdate the protocols, especially

for debugging the early versions of the protocols.

Organization: This paper is organized as follows: In Section Il, we disam®e related work.
In Section lll, the LI refinement methodology is illustratadlowed by Section IV where we
introduce the preliminary definitions and notations usedhi@ paper. We also formalize the
components of the LI protocol in this section. We target lEngock as well as multi-clock
systems. In Section V, we describe our framework along vigthnnplementation in PROMELA

and SML followed by conclusion in Section VI.

B. Main Contributions

The main contributions of this paper are as follows:

« Development of a framework for validating families of LIPs.
« Formal modeling and verification of a family of LIPs in SPIN.
« Modeling and simulation based validation of LIPs using actional programming frame-

work.

Il. RELATED WORK

There are several approaches on how to create LI designenCat al proposed a “correct-
by-construction” methodology to design latency insemsisystems for single clock SoCs [3].
In their approach, all modules are encapsulated in a wrajgpérm a “shell” that is latency
equivalent to the actual process, without having to modify internals of the original IP. This
encapsulation is done by composing each process with adizgiaRelay stations are added
along the long interconnections. They act like pipelineck#oto store and forward data, and
contain at least two registers and control logic. Once theirements of these relay stations are
determined based on the long interconnect in the initiad¢gland route, placement and routing
are done again, now including the relay stations. Sevegghtibns for placement and routing
may be needed in order to get a configuration that satisfiesmtaliconnection constraints. In
this paper, we refer to this approachratay-station base@pproach.

The functionality of the equalizer is defined in the prelianiy section

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 5

In [8], we propose a different approach, which disposes efréiay-stations by adding some
interface logic and wiring. While this approach requiresrenwires, it does not increase the
number of components that have to be placed, and therefesdesss iterations for the placement
and routing. We call this thbridge-basedapproach. Instead of placing relay stations along the
long interconnects that connect two modules, we plabedye at the interface of the modules.
A bridge is a composition of two processessglitter at the output of a “shell” and energer
at the input of the other “shell”. Theplitter and mergerprocesses are formally defined in the
preliminary definitions in Section IV.

All components of such LI designs are synchronous. The Liesys presented are targeting
SoCs with a single master clock. Singh and Theobald gererdtie LI theory for Globally
Asynchronous and Locally Synchronous (GALS) systems [T]thieir approach all input and
output signals are controlled by complex FSMs implememeté wrapper. The communication
network is implemented as an asynchronous system to conmeatiles with different clocks.
Overall this approach is associated with heavy penaltigenms of implementation costs and
performance.

Casu and Macchiarulo show how to reduce chip area compas@drtoni’s approach [6]. They
use a smart scheduling algorithm for the functional blodikvation and substitute relay stations
with simple flip-flops. One disadvantage of this approacina the schedule has to be computed
a priori and depends on the computation in the process. Ithapge is made in any process, it
may result in the change of the flow of tokens and may resulh@onsistency with the current
scheduling algorithm. In this case, the schedule has to ¢teadated, which is expensive. We
propose a validation framework for such LI protocols whereytcan be easily checked for
correctness. We use two different techniques for valigati@rmal verification using SPIN and
simulation based validation using SML. This framework Iseiip validating such protocols that

are continuously changing and evolving.

[II. DESIGN FLOW TO LI REFINEMENT

In this section, we describe a transformation procedurefioeg a synchronous system to an
LI system shown in Figure 1 as a flow diagram.

The steps to LIP refinement are as follows:

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006

Fig. 1.

Step 1

Collection of
synchronously
communicating
processes

Step 4

"|interconnect routing

Floor planning and

Step 5 l

Refinement of
long <
interconnects

Step2

Floor planning
and
interconnect

routing Step 6 L
Floor planning

and interconnect
routing

No

LIP required

Yes

Any Long
nterconnects ?

Encapsulation of
all modules
with block of
control logic

» Done =«

Refinement steps to LI implementation

We start with a collection of synchronously communicgttomponents. These components
can represent custom-made modules or IP cores.

Floor planning and interconnection routing are done tckHor long interconnects. If all
communication can be done in a single clock cycle, there ise®d for LIP refinement.
If long interconnects are present then all modules arapsutated with a block of control
logic. This encapsulation includes logic that controlsftbe of the events, buffers, control
stations, repeater stations etc. to enable correct trassmi of data.

Estimation using floor planning and interconnect rouigigone again, this time with the
encapsulated processes to relocate and evaluate the deldlgie long interconnects.
After finding the delays on the long interconnects, thagies can segment those long
interconnects with additional processes containing bsiffiatches, forwarding stations, etc
to ensure that data is properly communicated through thg ioterconnects. Depending
on the delay of the interconnect, the events can be comparedthe point they are placed
on the signal to the point they leave the signal.

Floor planning and interconnect routing is done agaimuee that no long interconnects

exist in the system.

Once these synchronous components are composed togetfemt@a LI system, our next

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 7

goal is to check if the new LI system is functionally correBefore we present the framework
for the validation of LI systems, we first look at the backgrdwf the two validation techniques

we use and present some preliminary definitions.

V. BACKGROUND AND PRELIMINARY DEFINITIONS

In this section, we give the background for the SPIN modetkéeand we provide a small
introduction to functional programming, and we give the nigbns of some terms we use
throughout the paper. We present definitions for LI refinenodrsingle clock as well as multi-

clock systems.

A. SPIN background

SPIN [12] is a model checker used extensively for formalfieation of systems. SPIN is used
to trace logical design errors and to check the consistefigpecifications. Like most model
checkers, SPIN also verifies a system for all exhaustivespétih basic building blocks include
asynchronous processes, message channels, synchrostaiements, and structured data. We
use these basic blocks to write synchronous models. The cmcation is done through shared
global variables. Since the processes run asynchronau$8¥IN, we synchronize the execution
of all processes with alock controllerin order to make our model behave synchronously. We

illustrate and explain in detail the model of the clock cotiér in section V-A.

B. Functional Programming

In [13], we presented a functional programming based fraonkevior system modeling using
the Standard ML (SML) [14] language. Functional languageshsas SML provide a clean
and simple semantic model, which performs all computatigrfumnction application, thereby
providing a more abstract notation to express computalimour dynamic validation framework,
we model the idealized synchronous model as well as its ldisarand compare both the models
by feeding input streams to both modules together and cangpahneir outputs for latency
equivalence. The reason this framework is used will becoe& @s we provide the definitions
of various components of the LIPs in the subsequent sectidhthe definitions can be readily

recognized as recursive function definitions which can bectly mapped to SML.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 8

C. Preliminary Definitions

In this section, we show some of the definitions we use in teeakthe paper. Let” be the
set of data values and, be a countable set of time stamps. Unless otherwise spedffiedis
paper, we assumé& = N = set of natural numbers. An eveatc VV x T is an occurrence of a
data value with a particular time stamp. However, in theeyst we consider, a special event
called absent eventlenoted byr that may occti. Therefore, the set of all events is denoted
by E, wherer € E and for all othere € E, e € V x T. Whene € V x T itis called an
informative eventA signal s is defined to be a sequence of events, often denotegeas; . . .
wheree; € E.

For the preliminary definitions, it is a signal,s[i| denotes theé' event, hence eithes]i]
€ V x T or sli] = 7. The set of all signals is denoted I3 There are input signals, output
signals andstall signals. A stall signal; is a sequence of boolean events, isglz] € Bool x T'.
The set of all stall signals is denoted By. In our system, IPs are hardware modules that map
input signals to output signals, therefore in this paper @ferrto them as processes. A process
p is a functionS™ — S™ wheren, m € N. A synchronous system consists of these processes
where communication and computation happens at the glédek.cThe communication among
these processes is assumed to be zero-delay and each pal@sssne cycle for computation.

In the remainder of this section, we define a few terms andinotathat are used in the paper.

Definition 1: Givens € S ande € E, we definee® s = s’ wheres’ = e :: s, S.t.e is the first
element and is the rest of the signal.

Definition 2: Given one tuple ofn elements and another af elements > creates a tuple
of m + n elements.
<ay...,anp >C <by, ..., bp> = <ai,...,an,b1,...,byp>

Definition 3: Given two tuples ofn events and: signals respectively)p creates a tuple of
n signals with an event appended to each signal.

<elyrnln>@P <81y, 8, > =< €1 DS, ., DSy >

Definition 4: Latency Equivalence The two signalss; ands, are said to be latency equiv-
alent,s; =, sy & F(s1) = F(s2), Where

%It may be caused due to lack of valid data in the producer ortdie consumer’s request to delay a transmission

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 9
F : S — S be defined asF(s) = o(s,1,n) and,

o(s,i+1,n), if s[i|=r1
ofs,i,n) = q sli, if (i=n)
sli] ®o(s,i+ 1,n), otherwise
F takes a signab as input and outputs a signél that contains na events, but preserves all
informative events. The helper functientakes the signat, n which is the length of the signal
s and the initial index 1 as parametessis defined recursively with the following cases: If the
event at current index is, theno is called with the index incremented. If the event is mot
and the index reaches the length of the signal, theerminates by returning the last event,
otherwise the informative event at tfé position is returned witlr called to check for the next

event.

Definition 5: Sequential composition Given two processeg;: S* — SY, ps: S¥ — S* and
s1,-++, S, € S, we define the sequential operatoas:

p2opi(S1, -, 8u) = pa(p1(s1,- -, Su))

Definition 6: Feedback composition[10]: Given a proces®: (S x §) — (S x §) and
si, Sj, s, € S, we define the feedback operatbi3,(p) as:

FB,(p)(si) = s wherep(s;,s;) = (s;, Si)

The signals; is an internally generated signal and the behavior of thetfaek process is defined

using fixed point semantics [10]. For unique fixed point tosexwe assume all processes to
be monotonic and continuous. For simplicity, we define treglmck composition for a specific

process with two input and output signals, though it can Isdyegeneralized for processes with
multiple inputs and outputs.

Definition 7: Vectorization functionr?_, (ezp(i)) evaluates the expressienp(i) for i from 1

to n.
TP (exp(i)) = < exp(l),exp(2),--- ,exp(n) >

where,exp(k) is a textual replacement afby & in exp(i).

In this work, we target théridge-basedpproach, where all synchronous modules are encap-
sulated with arnequalizer An equalizer £) is a process that given input signals and a stall

signal, it produces output signals and stall signals. The functionality of the equalizer can be

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 10

divided into three modes:

1. Disable modeln this mode, the equalizer is stalled by another processugh an input
stall signal. The equalizer sends absent events on all tfaubsignals and enables all the
output stall signals using functiomsertStl(shown in Definition 8).

2. Absent modeln this mode, the equalizer receives an absent event on bits mput
signals and its input stall is disabled. The equalizer setdent events on all its output
signals and stalls only those processes from which it redean informative event using
function InsertAbt(shown in Definition 8).

3. Present modeThe equalizer receives informative events on all its irgggihals and its input
stall is disabled. It places these informative events onadtmput signals using function

InsertEvt(shown in Definition 8).

Definition 8: Equalizer (£) : Givens,...,s, € S ands; € Sy, the equalize€: (S™ x Sr)
— (S™ x Sp™) is defined as:
E(S1,- 1S, 80) = eval(st, ..., Sn, 50, 1,...,1)
where,
eVal(81, - - -y Sny St1 1 82,101,102, -+ 5 in) =
if (s¢1 = false) then
if (37— (s5[i5]) = 7) then
Insert Abt @ evalnextindex

elseInsert Evt @ evalnextevent

elseInsertStl @ evalnextstall

InsertAbt = < 7,7,...,7 > O Ti_,(exp1(j))

InsertEvt = Y7_(s;[i;]) O < false, ..., false >

InsertStl = <7,7,...,7 > © < true,...,true >

evalnextindex = eval(si, ..., sn, st, L7_; (exp2(j)))
evalnextevent = eval(s1, ..., sn, st, Tj_; (i + 1))
evalnextstall = eval(s1, ..., sn, st, Yy (expa(j)))

exp1(j) : if (s;[i;]) = 7 then false elsetrue

expa(j) « if (s;[i;]) = 7 theni; + 1 elsei,

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 11

The equalizer is defined using a helper functian/ that takesn signals, a stall signal and
initial indices for each input signal and returnssignals and. stall signals. The initial indices
are given assuming that the first event for each signal isatgbsition.

In the bridge-basedapproach,splitter and merger processes are placed for communication
of data needed in order to enable communication throughahe interconnects. We compose
these two processes to formbadge process as shown in Figure 2. Thedge not only ensures
correct flow of events from one process to another, but alsores that the delay in between

the events is minimized. Eadiridge process has one input signal and one output signal.

= Splitter Merger >

Fig. 2. Bridge

The splitter and themerger process are connected byinterconnects where is the delay
on the long interconnect. Hence, theitter process has output signals. This process contains
simple placement logic for the placement of events on thesignals. The splitter is implemented
at the output of a process, and it places events on the condsyy signals. The splitter only
places one input event on one of the output interconnectslbasent events are placed on the rest
of the signals at a particular time stamp. Assuming thatetlaei events on the input signal
of the splitter, at every cycle, th&" event is placed on the' signal based on a rotational
scheme. For example, if the delay on the interconnect is Bsythen in the current cycle, the
first element will be placed on the first signal and absent tsweill be placed on the other two
signals. In the next cycle, the second event will be placethersecond signal and absent events
will be placed on the first and third signals and for the thivére it will follow the scheme.
After the third event is placed, in the following cycle, thaufth event will be placed on the first
signal again. This rotation scheme will continue for thet mdsthe events. This functionality is

illustrated by the formal definition shown below:

Definition 9: Splitter : Given s € S, the SplitterH : S — S™ is defined as:

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 12

H(s) = sprd(s,n, 1)
where,
ifi=n
sprd(z :: y,mn, i) =
place(:c, n, 7;5 1) @ SpTd(y, nvi + 1)5

otherwise

T, anzl

T OinsertAbt(n — 1), otherwise

insert Abt(n) = {

x @insertAbt(n —j), ifi=1
place(z,n,i,j) = 7O place(z,n,i— 1,7+ 1),

otherwise

The splitter is defined using a helper functisprd(s,n,1)that takes three parameters which
are the signak, delay on the interconneet and initial index of the signak. sprd uses the
place function to send an event on the appropriate output sigr@. flinctionplace puts~ on
all signals usingnsertAbtexcept for thei’* signal on which it places thé" event of the input
signal.

Contrary to the splitter, we implementraergerthat takesn input signals and outputs one
signal. The merger also extracts one event from the inpattsgoased on the rotational scheme
as illustrated earlier and places it on the output signa flimctionality of themergeris formally

defined below:

Definition 10: Merger: Given sy, --- , s, € S, the mergetM : S™ — S is defined as:
M(s1,...,8n) = ext((s1,...,8n), n, 1)

where,

x, ifi=n
rem(z ::y,n,i) =

rem(y,n,i+ 1), otherwise
ext((T1 Y1y oy Tp 22 Yn), My 1) =

{ rem((x1,...,2n),n,0) ®ext((y1,. .., Yn),n, 1), i1=n

rem((x1,...,xn),n, 1) ®ext((y1,...,yn),n, i+ 1), otherwise

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 13

The merger is defined using the helper functtenthat takes as parameters the signals. ., s,
delay of the signah and the index of the first signagxt extracts the informative event from
the appropriate signal and places it on the output signalgusierem function. remreturns the

event at thel*” position.

D. Multi-clock extension to LIP

The LI systems proposed earlier have been mainly targetmglesclock systems where all
components operate on the same clock. We now consider éxtetine existing LI implementa-
tion for multi-clock systems where different componentshvdifferent clocks are connected via
arbitrarily long interconnects. The need for a system witmponents having different clocks
arises when different IP blocks from different vendor aregnated in the same system. At this
time, however, we are only permitting the use of componeritis defined clock relations, also
called rationally clocked systems. By clock relation, weaméhat there is a known ratio of the
evaluation cyclg between different components. In the SML framework, theéamoof clock is
defined by the evaluation cycle of the processes. This apprteerefore makes it possible to
connect rationally clocked systems.

We modify our original refinement methodology for multi-cloLI design. Before encapsula-
tion of the processes, we add &nsert and aStrip process to each synchronous component of
the system. Thénsert process inserts absent events for each event on the original incoming
signal wheren is the ratio of events on the incoming signal to the numbervehts evaluated
by the process in each cycle. The output of thesert process is then given to the original
process. The formal definition of thesert process is shown below:

Definition 11: Insert is a process, s.Z(s) = s’ where

s = g(y,n) and,

T, if n=1
f(n) = {
7O f(n—1), otherwise

glala,n) = (21O f(n)) D g(x,n)

We also place &'trip process at the output of the synchronous component.Jiig process
removes the extra absent events inserted bylthert process. The formal definition of the

%In each evaluation cycle, a process consumes an input awdiges an output.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 14

Strip process is given below:

Definition 12: Strip is a process, s.0)(s) = s’ where

/

s'=g(y,n) and,t(zl : z) = x

s), ifn=1
f(s,n)_{t” f

f(t(s),n—1), otherwise
gzl z,n) = f(zl,n) P g(x,n)

Once these processes are composed with the original syralsaomponents, we can then

follow the earlier proposed refinement methodology.

V. FRAMEWORK FOR VALIDATION

It is essential to validate the functionality of the LI syst¢hat is formed by composing the
components of the LIP with the synchronous system. We pmposeasy to use framework
for validating such LI systems. In this framework, we mode¢ tLI system along with its
synchronous idealization and provide the same input ssgitaboth the systems. These input
signals can also be latency equivalent. We then modekamwmparator process which is a
reduced version of the Equalizer process. Similar to theakgr, the Egcomparator process
reads the informative events from the output signals of W gystems. The informative events
on these signals are compared and checked to be latencyalguivn the case when an absent
event is seen on one of the output signals, it is discardedtt@chext event is considered on
the same signal. The informative events on the two outputassgare compared in sequence to

ensure correct functionality. The framework is shown inufFeg3.

Synchronous System \

Input signal Result

Eqcomparator

LI System

Fig. 3. LI Validation Framework

Using this framework, we can take any system and its LI imgletation and validate them

for correct functionality by latency equivalence checkirithis framework can be used for

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 15

any proposed LI protocol to ensure the correctness for teeesy For example, the approach
proposed by Casu and Macchiarulo for optimization and uaisgheduling algorithm to control
the flow of tokens can be easily checked for correctness asctieduling may change depending
on the change of functionality of the system.

We have validated various examples of LI systems using @améxwork with two different
approaches. We model a synchronous system and its LI impkatan in PROMELA. Then we
formally verify it by placing an assertion in thBgcomparator process. The assertion property
states that the informative events from both systems aral guavided they are given the same
input sequence. We show how we implement the componentresbiar refinement to LI system
in the following section. We also present another simutati@sed validation approach using

this validation setup in the SML framework.

A. SPIN based description

In SPIN, the communication among the processes is implesdetitrough global shared
variables. A process may write to a variable and another read from the same variable.
Since, the SPIN model checker targets mainly asynchronmisras, and to model a synchronous
system, we introduce alock controllerprocess that controls the reading and writing of these
variables for every clock. Hence, we divide the working of firocesses into two phases, the
read phase and the write phase. In the read phase, the @ecess the values from its shared
variables and in the write phase, new values are written osetivariables. It is assumed that the
communication is done in zero-time and all processes wonkwaently as modeled. Temporary
variables such agone; are used to denote the reading phase (when 0) or writing plndsen
1) of processP;. Unless all processes complete reading or writing, depgndn the phase, the
clock controller will not change the phase.

In PROMELA, an equalizer process and its composition wihoitiginal process is modeled.
The PROMELA code for the equalizer is shown in Listing 1. I timplementation shown,
we assume that it is composed with a process with two inpgtsats. The SPIN model of the
equalizer consists of two temporary buffers for each sigoatore the values on the incoming
signals. We also declare variablelid; which keeps the track of the number of informative
events in the buffer forignal;. In every clock cycle the equalizer reads a value during the

read phase and store the value in the temporary variablehédwalue is stored, thealid; is

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 16

incremented for that signal. In the write phase of the saroekctycle, the value is written on
the output provided the buffer count (kelid;) is greater than 1 for all signals. Otherwise an
absent event is placed on all output signals. The logic feraitput stall signals of the process
are based on the number of informative events on the bufi@ndffonality of the equalizer is

presented in Section IV-C). The PROMELA code for the Equaliz shown in Listing 1.

Listing 1: PROMELA code for Equalizer

{Comment: The code for the equalizer is presented belaentiypes==1 means that event ofignala is informative.
There are two temporary buffers for each signainpl 4 is the first temporary buffer for signal A ardmp2 4 is the second
temporary buffer for signal A. The variablgall == 1 denotes that the equalizer is stalled.
proct ype Equalizer(){
int validi, valids;
loop:
Synchronize reading with other processes.
[* START OF READ PHASE */
if
O (eventtypea && wvalidi == 0) — valid;++;
Store value intempl 4
O (eventtypea && wvalidy == 1) — validi++;
Store value intemp2
O (leventtypea && walidy == 1) — templa = temp2a
Oelse — skip
fi;
/* Signal B can be written in a similar way */
Synchronize writing with other processes.
[* START OF WRITE PHASE */
if
O (validy > 0 && walidy > 0 && ! stall) —
validi—; valida—,
Place events on output signals
O else— Place absent events on output signals ;
fi;
Set output stall signals based onlid; values

goto loop; }

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 17

The PROMELA code of the splitter process is shown in Listing\2 assume that there is a
two clock cycle delay on the interconnect where the spligglaced. A temporary variab}@ace
is defined that places the events from the input signals teeitgnal0 or signall, depending
on the current value of thglace. These two signals connect the splitter and the merger. The

place variable keeps changing every clock cycle.

Listing 2: PROMELA code for Splitter

{Comment: The splitter is placed at the output of a synchrenmodule connecting to a long interconnect. For this
implementation we assume that the interconnect delay iscgwtes. The synchronization is done when the module gives an
output. The placement variable callpthice is defined s.t whemlace == 0 then the event is placed ofignaly, otherwise

it is placed onsignaly }

proct ype Splitter() {
int place=0;
loop:
Synchronize with process.
if
O place == 0 — place=1,
Place event omignaly
Place absent event ofignal;
O place == 1 — place=0;
Place event omignaly
Place absent event arignalo
fi;
goto loop; }

The PROMELA code of the merger process is shown in Listing &e8l on the logic used
by the splitter, similar logic is used to read the values fitt two incoming signals. Theace

variable is offset in this module based on the delay on theréonnect. The values read from

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 18

the signals are then placed on the output.

po000ccen,

E Clock 1§
[J

A

o |
]
EqP | delay | = 4r EQQ | Q | ! Soupu
=

0 \ I 0

: : A ""’ |
. < |f _
PP S L

U

1-clock cycle 2

s, — signal i
st- stall signal i

Fig. 4. LI system with Bridge

We formally verify the assertion for latency equivalencéengsthe SPIN model checker for
an example with two processes as shown in Figure 4. The exaspf a simple parity checker
that checks if the input is a 1 or 0. The output of the systemased on the previous input’s

value.

Listing 3: PROMELA code for Splitter

{Comment: The code for the merger is presented below. Theené&glaced at the input of synchronous module on the
long interconnect. The synchronization is done when theuteorbads. Thextract variable is defined s.t whetwtract ==

0 then the event is taken fromignaly, otherwise it is taken fromsignal: }

proct ype Merger(){
int extract=0;
loop:
Synchronize with process.
if
O extract == 0 — extract=1;
Extract event fromsignalo
O extract == 1 — extract=0;
Extract event fromsignal;
fi;

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 19

goto loop; }

An alternative to using formal verification, we use a simolatbased technique to validate
the LI systems in our proposed framework. We model this fraank in SML and simulate for

various test vectors.

B. SML based LIP description

In this section, we describe the components of the LI franmkvemd its implementation in
SML. A finite signal is modeled as generic list, whereas amit&isignal is written as delayed

function application (Listing A).

Listing A: Definition of finite and infinite signals

[* Definition of a finite signal */

dat at ype ’a signal = nil| :: of 'a * 'a signal

[* Definition of an infinite signal*/

dat at ype infseq = nil| cons of 'a * (unit— 'a infseq)

In SML, for our convenience we formulate an event to be a lfistin® elements, where the
first element is the value and the second element identifieth&h the event is an informative
event or an absent event (eg.= [3,1] is the;* event with 3 as the value and 1 as the identity of

the everft). Hence, a signal can be formulated as a list of events.s(eg{[1,1],[2,1],[3,0],...]).

Following the earlier mentioned refinement methodologyfivet encapsulate the synchronous
components with an equalizer. The SML code of the equal&zgiven in Listing B. The equalizer
reads one event from all the input signals of a process aladtigam event from the stall input.
It then checks if all the events at a time are informative. Theck for events is done through

41 corresponds to an informative event and 0 corresponds &bsent event

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 20

the etypes andinfo functions. The functionality setting the stall values fisable modes
done by thestallon function and the output is given 3. The stall values when the equalizer
is in absent event mods set bystallset function and the output is given 2. Finally, the
valid modeoutput is given byel. The equalizer process is then sequentially composed with

the synchronous process to form the shell of the process.

Listing B: SML code for Equalizer

fun equalizer() =fn s=>fn st =>
f(s, st,indexstart(length(s))
fun f(O.stiust.) = [[f(o[) =0 fcD =1 |
f(s,stl::st,i) =
| et
fun etype(x1::x2) = x2| etype([]) = nil
fun etypes[] = []|
etypes(x1::x) = etype(x1l) @ etypes(x)
fun info [] = false |
info(x1::[]) =i f (x1=1)t hen trueel se false|
info(x1::x) =i f (x1=1)t hen info(x) el se false
val allevents = e(s,iJ *Events fromall signal s*/
val allinfo =i f info(etypes(allevents)) = true
then true else false
/+*True when all events are informativex/
f un stalloff(0) = [] | stalloff(n) = [1] @ stalloff(n-1)
f un stallon(0) = []| stallon(n) = [0] @ stallon(n-1)
fun flipval(x) =i f x=1then O else 1
fun stallset([]) =[] |
stallset(x1::x) = [flipval(x1)] @ stallset(x)
val el = [allevents,[stalloff(length(allevents))]]
val e2 = [tauevents(length(s)),[stallset(tags(allevents))]]

val e3 = [tauevents(length(s)),[stallon(length(allevents))]

(case(stl) of
1 => (if allinfo = true
t hen ([el] @ f(s,st,incindex(i)))
el se ([e2] @ f(s,st,incempty(i,etypes(allevents)))))

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 21

0 => ([e3] @ f(s,st,i)) —
=1

end

The next stage of the refinement methodology involves refirtime long interconnects by
inserting the bridge process. The delay on the bridge is teddey the Delayproc process

that just delays the events bycycles, wheren is the delay on the interconnect (Listing C).

Listing C: SML code for Bridge

f un Bridge(n) =f n s => Delayproc(n) (merger(n) (splitter(n) (s)))

The SML implementation of theplitter process is shown in Listing D. An input signal and
the interconnect delay is given to tkelitter process. One event is read from the input signal
andinsertevent function places the event from the input signal to one of titerconnects and
absent events are placed on rest of the interconnects. Tdrdsesre placed in the rotational

scheme as illustrated eatrlier.

Listing D: SML code for Splitter

f un splitter(n) =f n s => f(s,1,n)
funf({]l,-—) =1 | f(xL:x, i, n) =
| et
f un insertevent(_j,0) =[] |
insertevent(yl1,j,n) =i(f n =
t hen [yl] @ insertevent(yl,j,n-1)
el se [[0,0]] @ insertevent(y1,j,n-1))

if (i=n)
t hen [insertevent(x1, i, n)] @ f(x, 1, n)

el se [insertevent(x1, i, n)] @ f(x, i+1, n)

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 22

end

The SML representation of the merger is shown in Listing Ee Ehtractevent function
extracts one event from all signals at a time. Extractionw&nés from the signals is done in

similar way as they are placed on the interconnects by thtespl

Listing E: SML code for Merger

fun merger(n) =f n s => g(s,n,1)
fung(l, n i) =1 | g(x1:x, n,i) =
| et
f un extractevent([],n) = []| extractevent(x1::x,n) =
(case (n) of
1=>x1|

__ => extractevent(x, n-1))

if (i=n)
t hen [extractevent(x1,))] @ g(x, n, 1)
el se [extractevent(x1,i)] @ g(x, n, i+1)

end

We compose all the components of the system after the refmeffiee input sequence of the
splitter and the output sequence of the merger are equiyaiece the order of events written
by the splitter on the: output signals and the order of events read by the merger fiom
input signals is the same. Therefore, the flow of events frloendutput of one shell across the
long interconnect to the input of the corresponding sheth&ntained. As the stall signals are
dependent on the events received in the previous cycle fhenptocesses to which these stall
signals are connecting, they operate on a feedback semawe use the fixed point operator

defined in the preliminary section to implement the feedb@aegting F).

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 23

Listing F: SML code for Feedback

fun fb(p) = fixpt(p,s,[],length(s)+1)
[* The fixpoint is computed on event basis */
f un fixpt(g,s,sout,0) = sout fixpt(qg,s,sout,n) =

fixpt(qg,s,(q s sout), n-1)

For the SML framework, we consider a larger case study of aptag modulator that consists
of three IPs: regulator, convolutor and analyzer (FigureThe regulator module takes an input
signal and a control signal and outputs based on the congnoalsby adding a threshold value.
This output is then multiplied with a masking value by thevaator module. The output of the
system is given by the amplitude signal. The analyzer modutputs the control signal based
on the input of the amplitude. Code listing for the Adaptiveoddlator can be downloaded

from [15].

Mask signal

Multiplier

Input signal Amplitude signal

Regulator

In order to check the correctness of the LI system, we setapwio systems as described

Fig. 5. LI based Adaptive Modulator

by our validation framework. We feed the same input sequeadeoth models and validate
for the latency equivalence of their outputs. We have imgleted this LI system for a finite
signal input as well as for an infinite signal input. For findignals, we can see the output of
the Eqcomparator process for as many input events given. In the case of infgigeals, we

can check for the desired number of input values as computédr infinite values is based on

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 24

delayed function application.

In SML, we can also easily modify our aforementioned LI sgste an LI system containing
components with different evaluation cycles.

The Insert process appends absent events to an event received from itk zer process.
The number of absent events depend upon the ratio of theagi@aluspeed of the process and
the rate at which the inputs are received from thealizer process. The SML code for the
Insert process is shown in Listing G.

Similarly, theStrip process receives one output event with extra absent evepesded every

evaluation cycle of the system. The extra absent eventsiscarded by theStrip process.

Listing G: SML code for Insert process

fun Insert(n)= fn s1 = h(sl,n)
fun h(],) =0 | h(x1:x, n) =
| et

val sigl = [x1] @ tausall(n)

[sigl] @ h(x,n)

end

Both these processes are composed with the shells. Thesprbeert is applied to all the
input signals of the process. The parameteepresents the number of cycles used by the process
compared to a single communication clock of the system. TH& &ode for theStrip process

is shown in Listing H.

Listing H: SML code for Strip process

fun Strip(n) = fn s1 = f(s1,n)
funf({l,)) =0 | f(x1:x,n) =

| et

fundr[] =[] | dr(x:xf) = xf
fundrop (I.-) =[] | drop(s,1) = dr(s)

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 25

drop (s,i) = drop(dr(s),i-1)
in
drop(x1,n) @ f(x,n)

end

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a framework for the validation ofsystems. The LI systems
along with their synchronous idealization can be modelegktteer and checked for latency
equivalence. We show two different techniques for valmlatising our framework. We model the
entire framework in PROMELA and formally verify using the ISPmodel checker. The latency
equivalence is expressed as a formal property and verifie@daivalence. We also show the
validation using the functional programming based simaatechnique where the framework
can be modeled in SML and simulated for certain input vecfbing latency equivalence can be
modeled by comparing the output of the two systems.

In contrasting the two techniques, we find formal verificatto be useful when we want to
exhaustively check the system for correctness for all pésgiaths. This approach may be time
consuming but would ensure complete validation of the sys®n the other hand, the SML
based simulation had its own set of advantages. We found Sadled simulation validation
to be an easier way to find the bugs in the protocol at an eghiese of the design process
by simulating the framework with a set of test vectors andckhng for the correctness of the
system. Also, due to the inherent denotational semantidaraftional languages, we found it
easier to formalize such a framework. We realized that the&b definitions of the components
of LIP could be naturally mapped to SML. Hence, it was easy talehthe framework in SML.
Also, the component of the LIP were made generic such thgtdbeld easily be reusable with
any component. It also helped in making the models open tensidn without making many
changes.

A possible extension would be to modify the LI protocols to [GGAsystem such that they

could be easily validated in the framework.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 26

(1]

(2]

(3]

(4]

(5]

(6]
(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]
[15]

REFERENCES

M. T. Bohr. Interconnect scaling - the real limiter to higerformance ulsiln IEEE Int. Electron Devices Meetingages
241-244, 1995.

L.P. Carloni and A.L. Sangiovanni-Vincentelli. Copingith latency in SoC designin IEEE Micro, Special Issue on
Systems on Chj22(5):12, October 2002.

L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovarvincentelli. A methodology for correct-by-constructitatency
insensitive design. IProc. International Conf. Computer Aided Verificatjqguages 309—315, November 1999.

L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Virntelli. Latency insensitive protocols. [ilth International
Conference on Computer-Aided Verificatiamolume 1633, pages 123-133, Trento, Italy, 07 1999. SeriMgrlag.

L. Carloni, K. McMillan, and A. Sangiovanni-VincentellThe Theory of Latency Insensitive Desigm. IEEE Transactions
on Computer Aided Design of Integrated Circuits and Sys@®(9):1059-1076, 2001.

M. Casu and L. Macchiarulo. A new approach to latency ms##ze design. InDesign Automation Conferenc2004.

M. Singh and M. Theobald. Generalized latency-inséresisystems for single-clock and multi-clock architecturdn
Design, Automation and Test in Europe (DATE’02004.

Syed Suhaib, David Berner, Deepak Mathaikutty, JeaBi Talpin, and Sandeep Shukla. Presentation and formal
verification of a family of protocols for latency insenséidesign. Technical Report 2005-02, Virginia Tech, 2005.
Luca Benini and Giovanni De Micheli. Networks on chip: Aew paradigm for systems on chip design. Design
Automation and Test in Europ2002.

Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Tifwedels of Computatian Morgan
Kaufmann, 2001.

Edmund Clarke, Orna Grumberg, and Doron Pelgiddel Checking The MIT Press, 2000.

Gerard HolzmannThe SPIN Model CheckeAddison Wesley, 2004.

D. A. Mathaikutty, Hiren D. Patel, and Sandeep K. Shuldafunctional programming framework of heterogeneous rhode
of computation for system design. Forum of Design Languages (FDL 2004004.

R. Milner, M. Tofte, R. Harper, and D. MacQueehhe Definition of Standard ML - ReviseMIT Press, 1997.

LIP FERMAT website. http://fermat.ece.vt.edu/LIfrh.

Syed Suhaib(IEEE Student Member) received his Master's degree in Caenpiingineering from the

Bradley Department of Electrical and Computer Engineedhd/irginia Polytechnic Institute and State
University in 2004. He is currently pursuing his PhD from giftia Tech under the supervision of Dr.
Sandeep Shukla. He has presented his research accompitshatethe University Booth at Design
Automation Conference in 2004 and 2005. He was also a retipiethe Young Student Support Grant

at DAC 2004. Suhaib’s research interests include formah&methods, requirement specification, agile

development tools, and synchronous languages.

IEEE TRANSACTIONS OF COMPUTERS , VOL. X, NO. X, OCTOBER 2006 27

Deepak Mathaikutty (IEEE Student Member) is a Ph.D student at Virginia Tech. Heeived his
B.S. from the National Institute of Technology, Trichy in@and M.S. from Virginia Tech in 2005.
Deepak’s research interest includes System Level Desigihddelogies, Models of Computation/Multi-
MoC modeling and functional frameworks. His current worglies a metamodeling driven customizable

multi-MoC system modeling environment (EWD) and semanté&sprving design refinements in SML-Sys

for System Design. Deepak has published around 15 artiel@suinals and conference proceedings and
his work is supported by the national science foundationF\Né&hd by the center for embedded systems for critical agjtios

(CESCA).

David Berner (IEEE Student Member) received his Ph.D from the UniversityRennes 1, France in
2006, the Diploma degree in Communication engineering &edM.Sc. in Communication and Media
Engineering from the University of Applied Sciences Offerdy Germany in 2001 and 2002. He is
currently a temporary Assistant Professor at Buele Nationale Supérieure d’Ingénieurs de Bourges and

affiliated with the Laboratory of Fundamental Computer 8ceeof Orleans, France (LIFO). Previously,

he has been with the French National Institute for Researdbomputer Science and Control (INRIA).
He has been a visiting researcher at the Center for Embeddetp@er Systems in the University of California Irvine from
2000-2001 and at the Virginia Polytechnic Institute andeStaniversity in 2003, 2004, and 2005. His research intsriestude

codesign of embedded systems, electronic system levedrdefirmal methods, and security aspects.

Sandeep Shukla(M99-SMO02) is currently an Assistant Professor of compwgagineering with the
Virginia Polytechnic and State University, Blacksburg. idealso a founder and Deputy Director of the
Center for Embedded Systems for Critical Applications (CB$and Director of the FERMAT Laboratory.
He was elected as a College of Engineering Faculty FelloweaVirginia Polytechnic and State University.

He has authored or coauthored over 100 papers in journatkshb@nd conference proceedings. He

coauthored SystemC Kernel Extensions for Heterogeneowelihg (Norwell, MA: Kluwer, 2004) and
coedited Nano, Quantum and Molecular Computing: Impla#ito High Level Design and Validation (Norwell, MA: Kluwer
2004) and Formal Methods and Models for System Design: AeBydtevel Perspective (Norwell, MA: Kluwer, 2004). He
has edited a number of special issues for various journalsisaon the Editorial Board of IEEE Design and Test. Dr. Shukla
has chaired a number of international conferences and Wwopkss He was the recipient of the NSF PECASE Award for his
research in design automation for embedded systems degiggh particularly focuses on system-level design langsagprmal
methods, formal specification languages, probabilisticletiog and model checking, dynamic power management, Ggifan

of stochastic models and model analysis tools for faukrtnit system design, and reliability measurement of faldt-ant

systems.

