Automated Extraction of Structural Information from
SystemC-based IP for Validation

David Berner® Hiren D. Patel*

Deepak A. Mathaikutty*

Sandeep K. Shukla*

@Institut de Recherche en Informatique et Systémes Aléatoires (IRISA/INRIA)
Campus universitaire de Beaulieu, 35042 Rennes, France
*Virginia Polytechnic and State University, FERMAT Lab.,
302 Whittemore Hall, Blacksburg 24061, VA, USA

david.berner@irisa.fr hiren@vt.edu

ABSTRACT

The increasing complexity and size of system level de-
sign models introduces a difficult challenge for validat-
ing them. Hence, in most industries, design validation
takes a large percentage of the overall design time. The
immediate solution is to automate certain procedures
of generating testbenches from the design given certain
information about the model. However, the volatile na-
ture of models used for design exploration results in the
designer having to alter the testbenches or the automa-
tion for the testbenches to reflect the design changes.
In efforts to alleviate this problem of constantly chang-
ing designs and generating appropriate testbenches for
the changed design, we propose a methodology of us-
ing structural reflection to extract structural informa-
tion from design sources allowing the use of tools such
as testbench generators and model viewers to seam-
lessly employ this extracted information. In this pa-
per we present a methodology to automatically extract
structural information from already existing SystemC
projects and we show how this information can be ex-
ploited for system management and validation tasks.
We illustrate example uses such as visualization, design
management tasks, and automated test generation.

1. INTRODUCTION

The rising complexity of embedded system design and
a widening of the productivity gap have raised the im-
portance of System Level Design (SLD)s languages and
frameworks. In recent years, we have seen SLDs such as
SpecC and SystemC [7, 12] in efforts to raise the level
of abstraction in hardware description languages. These
SLDs assist designers in modeling, simulation, valida-

Submitted to IEEE International Workshop on Microprocessor Test and
Verification MTV) 2005

mathaikutty@vt.edu

shukla@vt.edu

tion and verification of complex designs. However, the
high complexity and heterogeneity of designs make it
difficult for embedded system designers to meet the
time-to-market. Designers require improved method-
ologies for verification and validation and tools for de-
bugging and visualization for easier model building to
mitigate this productivity crisis. The growing size of
common system models is forcing design houses to reuse
intellectual property from other designs or from third
party companies. The fact that all the different parts of
the design have not been conceived in one toolset and
by the one actually using it is becoming an additional
challenge.

Aside from writing regular testbenches as test-driver
modules in SystemC, the SCV library [12] is a good
medium of writing different types of testbenches allow-
ing features such as randomized testbneches. Unfortu-
nately, the designer must have an understanding of the
design, interconnections, datatypes, etc. to generate
a testbench using SCV. Furthermore, as the design un-
dergoes changes, the testbench in SCV must be altered.
Automating this process of altering the testbench for a
design requires access to the the structural design in-
formation, but most SLD languages and frameworks do
not provide a clean mechanism for querying such infor-
mation. This is why we think it is important that tools
are able to automatically extract and exploit structural
design information from existing SLD models in order to
further facilitate a realm of design tasks for easier model
management, model visualization, automated test gen-
eration, improved debugging, etc.

Our approach to extracting structural design infor-
mation uses a suite of open-source technologies consist-
ing of Doxygen [4], Apache’s Xerces-C++ XML [15],
in combination with a C++ library to enable valida-
tion tasks exploiting this information. We also do not
require any interface description language for entering
meta-data. Our approach is based on pre-processing
SystemC models through our tools. To show the bene-
fits of having easy access to structural design informa-
tion, we implement several clients that use it. These
clients serve only as examples of exploiting this kind

of information and using it for validation purposes.
One example is a visualization backend that generates
graphical views of the structural information, another
is an automated test generator.

In this paper, we provide details on our approach to
the extraction of structural information from existing
SystemC designs and describe clients that exploit this
information for design validation purposes. We show
the benefits and importance of having access to struc-
tural design data for the validation of system level de-
signs.

1.1 Organization

In Section 2 we discuss some related work, along with
the technologies we employ. We discuss the main con-
tributions of this work in Section 3. Section 4 then
describes how the structural information is extracted,
Section 5 describes how this information can be used
for different validation aspects and we finally give some
concluding remarks and future work in Section 6.

2. RELATED WORK

In this section we describe some related frameworks
and languages as well as the open-source tools that we
employ for our implementation of the extraction and
exploitation of structural information.

2.1 Existing Tools for Structural Reflection

Several tools may be used for implementing structural
reflection in SystemC. Some of them are SystemPerl
[14], EDG [6], or C++ as in the BALBOA framework
[3]. However, each of these approaches have their own
drawbacks. For instance, SystemPerl requires the user
to add certain hints into the source file and although
it yields all SystemC structural information, it does
not handle all C++ constructs. EDG is a commercial
front-end parser for C/C++ that parses C/C++ into a
data structure, which can then be used to interpret Sys-
temC constructs. However, interpretation of SystemC
constructs is a complex and time consuming task, plus
EDG is not to be freely used in public domain. BAL-
BOA implements its own reflection mechanism in C++
which again only handles a small subset of the SystemC
language. As for runtime reflection, to our knowledge,
there is no framework that exposes runtime character-
istics of SystemC models.

2.2 BALBOA Framework

The BALBOA [3] framework describes a framework
for component composition, but in order to accomplish
that, they required R-I capability of their components.
They also discuss some introspection mechanisms and
whether it is better to implement R-I at a meta-layer
or within the language itself. We limit our discussion
to only the approach used to provide R-I in BALBOA.

BALBOA uses their BIDL (BALBOA interface de-
scription language) to describe components, very simi-
lar to CORBA IDLs [11]. Originally IDLs provide the

system with type information, but BALBOA extends
this further by providing structural information about
the components such as ports, port sizes, number of
processes, etc. This information is stored at a meta-
layer (a data structure representing the reflected char-
acteristics). BALBOA forces system designers to enter
meta-data through BIDL which is inconvenient. Our
method only needs pre-processing of SystemC models.

A drawback of this framework is that the BIDL had
to be implemented. Furthermore, the designer writes
the BIDL for specifying the reflected structure infor-
mation which can be retrieved automatically from Sys-
temC source. Furthermore, runtime reflection was not
done in BALBOA.

2.3 Java, C# NET Framework, C++ RTTI

Here, we discuss some existing languages and frame-
works that use the R-I capabilities. They are Java, C#
and the .NET framework and C++ RTTI. Java’s refle-
ction package java.lang.reflect and .NET’s reflect-
ion library System.Reflection are excellent examples
of existing R-I concept implementations. Both of these
supply the programmer with similar features such as the
type of an object, member functions and data members
of the class. They also follow a similar technique in
providing R-I, so we take the C# language with .NET
framework as an example and discuss in brief their ap-
proach. C#’s compiler stores class characteristics such
as attributes during compilation as meta-data. A data
structure reads the meta-data information and allows
queries through the System.Reflection library. In this
R-I infrastructure, the compiler performs the reflection
and the data structure provides mechanisms for intro-
spection.

C++’s runtime type identification (RTTI) is a mech-
anism for retrieving object types during execution of
the program. Some of the RTTTI facilities could be used
to implement R-I, but RTTI in general is limited in
that it is difficult to extract all necessary structural Sys-
temC information by simply using RTTI. Furthermore,
RTTI requires adding RTTI-specific code within either
the model, or the SystemC source and RTTI is known
to significantly degrade performance.

2.4 Doxygen, XML, Apache’s Xerces-C++

Two main technologies we employ in our solution for
obtaining and exploiting structural information from
SystemC models are Doxygen and XML. Doxygen [4] is
a documentation system primarily for C/C++, but has
extensions for other languages. Since SystemC is sim-
ply a library of C++ classes, it is ideal to use Doxygen’s
parsing of C/C++ structures and constructs to gener-
ate XML representations of the model. In essence Doxy-
gen does most of the difficult work in tagging constructs
and also documenting the source code in a well-formed
XML. By using XML parsers from Apache’s Xerces-
C++ we can parse the Doxygen XML output files and
obtain any information about the original C / C++ /

SystemC source. In [1] we describe the front end tool
using these techniques that we call SystemCXML. The
article [5] describes a service oriented architecture using
that.

3. MAIN CONTRIBUTIONS

Our main contributions in this paper are to show how
extracting structural information from IPs can open a
path for a plethora of validation applications and we
demonstrate this for SystemC examples. The main con-
tributions are:

e Indicate and demonstrate how structural informa-
tion is a key for design validation and management
applications such as visualization, automated test
generation, browsing, and re-packaging.

e Show how such structural information can be rel-
atively easily obtained from already existing Sys-
temC models with the use of open source tools
such as, Doxygen, XML, and Xerces-C++.

4. EXTRACTING STRUCTURAL INFOR-
MATION

Here, we present details on the infrastructure for the
automated extraction of structural information. We
only provide small code snippets to present our ap-
proach and the concept of using Doxygen, XML, Xerces-
C++, and a C++ data structure to perform the extrac-
tion and provide the information to use it for validation
purposes. For more dtails on the inner workings of the
tool please refer to [1].

SystemC Source
Annotated XML

//‘

}M

Validation: visualization, test generation, optimization, ...

Figure 1: Design Flow for the extraction

Doxygen pre-processing: Using Doxygen has the im-
mediate benefit of C/C++ parsing and its correspond-
ing XML representations. However, Doxygen requires
declaration of all classes for them to be recognized.
Since all SystemC constructs are either, global func-
tions, classes or macros, it is necessary to direct Doxy-
gen to their declarations. For example, when Doxy-

gen executes on just the SystemC model then decla-
rations such as sc_in are not tagged, since it has no
knowledge of the class sc_in. The immediate alter-
native is to process the entire SystemC source along
with the model, but this is very inconvenient when only
interested in reflecting characteristics of the SystemC
model. However, Doxygen does not perform complete
C/C++ compilation and grammar check and thus, it
can potentially document incorrect C/C++ programs.
We leverage this, by indicating which particular classes
need to be tagged, by simply adding the class defini-
tion in a file that is included during processing. There
are only a limited number of classes that are of interest
and they can easily be declared such that Doxygen rec-
ognizes them. As an example we describe how we force
Doxygen to tag the sc_in, sc_out, sc_int and sc_uint
declarations. We include this description file everytime
we perform our pre-processing such that Doxygen rec-
ognizes the declared ports and datatypes as classes. A
segment of the file is shown in Figure 2, which shows
declaration for input and output ports along with Sys-
temC integer and SystemC unsigned integer datatypes.
/*! SystemC port classes !*/

template<class T> class sc_in { };
template<class T> class sc_out { };

/*! SystemC datatype classes !*/
template<class T> class sc_int { };
template<class T> class sc_uint { };

Figure 2: Examples of class declarations

The resulting XML for a small code example is
shown in Figure 3. Doxygen itself also has some lim-
itations though and it cannot completely tag all the
constructs of SystemC without explicitly altering the
source code, which we avoid doing. For example, the
SC_MODULE(arg) macro defines a class specified by the
argument arg. Since we do not include all SystemC
files in the processing, Doxygen does not recognize this
macro when we want it to recognize it as a class dec-
laration for class arg. However, Doxygen allows for
macro expansions during pre-processing. Hence, we in-
sert a pre-processor macro as: SC_MODULE (arg)=class
arg: public sc_module that allows Doxygen to rec-
ognize arg as a class derived from class sc_module. We
define the pre-processor macro expansions in the Doxy-
gen configuration file where the user indicates which
files describe the SystemC model, where the XML out-
put should be saved, what macros need to be run, etc.
We provide a configuration file with the pre-processor
macros defined such that the user only has to point to
the directory with the SystemC model. More informa-
tion regarding the Doxygen configuration is available at
[4].

Even through macro preprocessing and class decla-
rations, some SystemC constructs are not recognized
without the original SystemC source code. However,
the well-formed XML output allows us to use XML

<memberdef kind="variable" id="classfir_1firr0">
<type>
<ref refid="classsc__in" kindref="compound">sc_in<ref> <bool>
<ltype>

._in<bool> fir:
SYSTEMC MODULE <name>reset</name>

SC_MODULE(fir)
{

sc_in<bool> reset; ~e———
sc_in<bool> input_valid;
sc_in<int> sample;

sc_out<bool> output_data_ready;
e <memberdef kind="variable" id="classfir_1fir5">
<type>

SC_CTOR(l) ™| <ref refid="classsc_out" kindref="compound">sc_out</ref>

- <<ref refid="classsc_int" kindref="compound">sc_int</ref> <16> >
SC_CTHREAD(entry,CLK.pos(); <ltype>

- <definition>sc_out<sc_int<16> > fir::result</definition>

<name>result</name>

<Imemberdef>

void entry():
X DOXYGEN OUTPUT

<module type = "SC_MODULE" name = "fir" >
<inport type = "bool” name = "reset" />
<inport type = "bool" name = "input_valid" />
<inport type name = "sample” />
<outport typ
<outport type = name = "result" />
<inport type = "bool" name = "CLK" />

<constructorof modulename = "fir" >

<process type = "SC_CTHREAD" name = "entry" />
<sensitivitylist name =“CLK" edge = “positive" />
<lconstructorof>
</module>

ASLD

Figure 3: Doxygen XML Representation

parsers to extract the untagged information. We em-
ploy Xerces-C++ XML parsers to parse the Doxygen
XML output, but we do not present the source code
here as it is simply a programming exercise, and point
the readers at [10] for the source code.

XML Parsers: Using Doxygen and XML parsers we
reflect the following structural characteristics of the
SystemC model: port names, types and widths, signal
names, types and widths, module names and processes
in modules and their entry functions. We reflect the sen-
sitivity list of each module and we also reflect the netlist
describing the connections including structural hierar-
chy of the model. We represent this reflected informa-
tion in an Abstract System Level Description (ASLD)
XML file. The ASLD validates against a Document
Type Definition (DTD) which defines the legal build-
ing blocks of the ASLD that represents the structural
information of a SystemC model. For example, some
constraints that the DTD enforces are that two ports
of module should have distinct names or all modules
within a model should be unique, which verifies that
the ASLD correctly represents an executable SystemC
model. The main entities of the ASLD are shown in
Listing 1.

ASLD: In Listing 1, the topmost model element cor-
responds to a SystemC model with multiple modules.
Each module element acts as a container for the follow-
ing: input ports, output ports, inout ports, signals and
submodules. Each submodule in a module element is
the instantiation of a module within another module.
This way the ASLD embeds the structural hierarchy in
the SystemC model and allows the introspective archi-
tecture to infer the toplevel module. The submodule is
defined similar to a module with an additional attribute
that is the instance name of the submodule. The sig-
nal element with its name, type and bitwidth attributes
represents a signal in a module. Preserving hierarchy

ut_data_ready” /> [—

information is very important for correct structural rep-
resentation. The element inport represents an input
port for a module with respect to its type, bit width
and name. Entities outport and inoutport represent the
output and input-output port of a module. Line 16 de-
scribes the constructorof element which contain multi-
ple process elements and keeps a sensitivitylist element.
The process element defines the entry function of a mod-
ule by identifying whether it is an sc_method, sc_thread
or sc_cthread. The sensitivitylist element registers each
signal or port and the edge that a module is sensitive
to as a trigger element. Connections between submod-
ules can be found either in a module or in the sc_main.
Each connection element holds the name of the local
signal, the name of the connected instance and the con-
nected port within that instance. This is similar to how
the information is present in the SystemC source code
and is sufficient to infer the netlist for the internal data
structure.

Using our well-defined ASLD, any SystemC model
can be translated into an XML based representation
and furthermore models designed in other HDLs such
as VHDL or Verilog can be translated to represent
synonymous SystemC models by mapping them to the
ASLD. This offers the advantage that given a transla-
tion scheme from say a Verilog design to the ASLD, we
can introspect information about the Verilog model as
well.

Listing 1: Main Entities of the DTD

1<!ELEMENT model (module)x* >

2<!ATTLIST model name CDATA #REQUIRED>

3<!ELEMENT module (inport | outport |
inoutport | signal | submodule)x >

4<!ATTLIST module name CDATA #REQUIRED type
CDATA #REQUIRED >

5<!ELEMENT submodule EMPTY >

6<!ATTLIST submodule type CDATA #REQUIRED
name CDATA #REQUIRED instancename CDATA
#REQUIRED >

7T<!ELEMENT signal EMPTY >

8<!ATTLIST signal type CDATA #REQUIRED
bitwidth CDATA #IMPLIED name CDATA #
REQUIRED >

9<!ELEMENT inport EMPTY >

10<!ATTLIST inport type CDATA #REQUIRED
bitwidth CDATA #IMPLIED name CDATA #
REQUIRED >

11<!ELEMENT constructorof (process x |
sensitivitylist) >

12<!ATTLIST constructorof modulename CDATA #
REQUIRED >

13<!ELEMENT process EMPTY >

14<!ATTLIST process type CDATA #REQUIRED name
CDATA #REQUIRED >

15<!ELEMENT sensitivitylist (trigger)* >

16<!ELEMENT trigger EMPTY >

17<!ATTLIST trigger name CDATA #REQUIRED edge
CDATA #REQUIRED>

18<!ELEMENT connection EMPTY>

19<!ATTLIST connection instance CDATA #
REQUIRED member CDATA #REQUIRED
local_signal CDATA #REQUIRED>

Data structure: The ASLD file serves as an infor-
mation base for our reflection capabilities. We create
an internal data structure that reads in this informa-
tion, enhances it and makes it easily accessible. The

class diagram in Figure 4 gives an overview of the data
structure. The topmodule represents the toplevel mod-
ule from where we can navigate through the whole ap-
plication. It holds a list of module instances and a list
of connections. Each connection has one read port and
one or more write ports. The whole data structure is
modeled quite close to the actual structure of SystemC
source code. All information about ports and signals
and connections are in the module structure and only
replicated once. Each time a module is instantiated,
a moduleinstance is created that holds a pointer to its
corresponding module.

The information present in the ASLD and the data
structure does not contain any behavioral details about
the SystemC model at this time, it merely gives a con-
trol perspective of the system. It makes any control flow
analysis and optimizations on the underlying SystemC
very accessible.

MODULE
INSTANCE

Q

MODULE
REGISTRY

*

CONNECTION
>

MODULE

=11

é

SENSITIVITY

LIST PROCESS

SIGNAL

INPORT OUTPORT INOUTPORT ‘ ’

! i |

Figure 4: Class diagram showing data structure

5. APPLICATIONS FOR VALIDATION

5.1 Visualization

One possible usage of SystemCXML is to facilitate
graphical visualization. For large models especially, it
is very intuitive to explore a design visually rather than
trying to infer the structural aspects of the model by
browsing through the code. This problem becomes even
more difficult, if the model description is disturbed over
multiple files. Therefore having any form of visualiza-
tion for the project does ease exploration and debugging
capabilities. There are visualization modes at different
levels of abstraction that can help to better compre-
hend a design, such as the netlists displaying module
connections on one or multiple levels, the module hi-
erarchy, a layout with blocks whose sizes are mapped
to the code size of the corresponding modules. The
ability to provide the above visualization modes can be
easily achieved through an extraction of the structural
information of the model, therefore it is not necessary

digraph usb

{ sc_main
node [shape=box] ;

ratio=fill;
sc_main; A

sc_main->"i_phy\usb_phy"; i_phy i_top i test
sc_main->"i_top\usb_top"; usb_phy usb_top test
sc_main->"i_test\test";

(a) DOT code

(b) Resulting graph

Figure 5: Example DOT code and resulting

graph

to understand the behavioral aspects. As visualization
can greatly improve productivity, it should be an inte-
gral part of any SLDL tool suite. Design visualization
tools are especially helpful for design space exploration
and semi-automated design refinements. In addition to
the above advantages, the automatic generation of a
graphical visualization of the design can also be used
for documenting different IPs, a step often neglected,
leading to better collaboration in terms of IP exchange
between different vendors and enhancing reusability of
components.

In order to demonstrate the ease of creating such a
visualization, we implement a back-end pass that gen-
erates a graph of the SystemC module hierarchy. Since,
there are many free libraries available for graph render-
ing, we decided to use the DOT format [8] from the
graphviz [9] package to render our graphs. It is a com-
prehensive and easy to use package, which is used in
many Open Source projects.

5.1.1 The DOT Format

Figure 5 shows the DOT code for the FIR filter ex-
ample and the resulting graph. We use a digraph lay-
out and choose boxed nodes whose width automatically
adjusts to the length of the node label. The first oc-
currence of a node name creates the node. Directed
connections are indicated with the ”->" symbol.

There exist many programs to interactively view
DOT files or convert them into various picture formats.
Dotty is the standard viewer and part of the Graphviz,
but there are better viewers such as [13].

5.1.2 Graph Generation

To generate the graph, we start with the list of
toplevel modules, these are modules that are not a sub-
module of any other module. Then we call the recursive
function submod_dot that writes out the relations to all
submodules and successively calls itself for all the sub-
modules. As a node label we give the module name and
the name of the instance. In order to keep a strict tree
structure with no rejoining branches, all instances have
to have different names. However in the SystemC code
this is not necessarily the case. For example, we have
three modules A, B and C, with B1 being an instance
of B and a submodule of A. Now if A1 and A2 are

submodules of C, we get 2 instances of B that have the
name B1, namely in A1 and A2. In order to avoid this
we keep track of multiple instantiations of a module and
distinguish between the respective submodules.

Figure 6 shows a part of the module hierarchy of
the SystemC implementation of a USB controller from
OpenCores [2]. In the lower right hand corner you can
see four instances of usb_fif0128x8, containing an in-
stance of usb_ram128x8. These have been numbered in
order to be able to distinguish them. The figure also
shows that there is not only one connected graph but
multiple graphs. This is due to the fact that we read
in the whole SystemC project as one file containing all
source and header files. Larger projects often contain
multiple sc_main functions, used to individually simu-
late parts of the design in a separate testbench, which
is the case in this example. The visualization of the
hierarchy helps to see the different parts of the design
and understand their usage.

The code for the back-end pass to generate the graph-
ical visualization illustrating the module hierarchy, took
around 60 lines of C++ code. This is small when con-
sidering the value add. We assert that given the cap-
tured structural information, multiple back-end passes
for other visualization modes or transformations can
be added with comparable effort, reducing the effort
needed in trying different things or implementing a de-
sired functionality. An enhancement to the current ver-
sion of the our visualization mode would allow the mod-
ule connections where the user can choose the number
of displayed hierarchy levels. We were looking into this
option as well, but Graphviz does not natively support
this kind of nested hierarchy, so it may be necessary to
use of a different graph rendering library.

5.2 Design Management

Another important possible use of structural design
information is design management. Large designs are
getting difficult to maintain - even if they are kept
in a file and folder structure that is readily accessible.
Browsing a design graphically or through tree and list
views can help in managing and maintaining large de-
signs. This makes it easy to view the different compo-
nents of a design and furthermore it helps in identify-
ing the component of concern, which reduces the effort
needed in isolating a particular component of interest
to the user.

Suppose the user is interested in knowing the amount
of RAM attached to the overall design. This is not ob-
vious to infer from the code since a single RAM mod-
ule can be instantiated with different sizes at multiple
places within the same module as well as across mod-
ules. Furthermore, there may be possible RAM instan-
tiations in the design that were done for testing pur-
poses, which is not a part of the actual design. For these
cases, the designer can use the module hierarchy visual-
ization, to view all the instances down to the leaf level,
from which it is easier to filter out all the RAM instan-

tiations and sum them up to get an idea of how much
memory is been used and how much space is needed on
the chip. Figure 6 illustrates the module structure of
a USB controller, it contains two 64k blocks, four 128k
blocks, and two 512k blocks, which sums up to 1664
kilobytes RAM. This calculation does not include the
64 kilobytes instantiated in the test of usb_fifo. This
valuable information can be easily achieved using our
module hierarchy view, which is otherwise very tedious.

Another design management task can be to identify
certain functionalities in old designs and package them
into a new IP for future use. In a netlist view the graph-
ical selection of a set of modules can then be put into
a new module with an automatically generated inter-
face, containing all these modules and their dependent
submodules. Again this kind of operation only necessi-
tates knowing the structural information, but otherwise
tedious to perform.

5.3 Automated Test Generation

We develop a Testbench Generator client that uses
the structural information to support automated test
generation. The test generation client is built using the
SystemC verification (SCV) [12], which is a library of
C++ classes, that provide tightly integrated verification
capabilities within SystemC. The Testbench Generator
interacts with the ASLD by invoking the respective API
calls to access the structural information pertaining to
test generation. The generator takes as input a Sys-
temC model and generated automatically a SystemC
test for the selected part of the model. This Testbench
Generator uses structural information such as the type,
bitwidth of ports and signals to generate test vectors
appropiate for this specification of the SystemC model.
The generator also has the abilities to generate tests
for pre-specified ports or signals of a SystemC model.
The client generates different tests based on the mode in
which it is set. The different mode can be set during ini-
tialization of the client. The unconstRand, simpleRand
and distRand are the currently defined modes.

The test generator can create constrained and uncon-
strained randomized testbenchs. In the unconstRand
mode, the client generates unconstrained randomized
tests using objects of the scv_smart_ptr<T> class of
SCV, which are containers for objects of type T. In the
simpleRand mode constrained randomized testbenchs
are created. These tests issue Keep_out and Keep_only
commands to define the legal range of values given in
the data file. Similarly in the distRand mode, SCV bag
objects are used in test environments providing which
takes a data file as input with the values and their prob-
ability.

Furthermore, the Test Generator uses the SystemC
constructs to generate trace file in the format of Value
Change Dump (VCD). This provides the user with a
trace file with value changes on all the reflected vari-
ables, ports and signals of the model, which can used
for debugging purposes. To generate a trace file, the

sc_main_2 ‘

sc_main_3 ‘ ‘ sc_main_4 ‘

sc_main sc_main_1

i_fifo
usb_fifo64x8

i_rom
usb_rom

i_test
test

i_test (2)
test

i_phy
usb_phy

i_test (3)
test

i_top

test test usb_phy usb_top test

i_test (4) ‘

i_test (5) ‘

i_phy (2) ‘

i_test (6) ‘

i_ram
usb_ram64x8

i_tx_phy
usb_tx_phy

i_rx_phy
usb_rx_phy

i_core
usb_core

i_tx_phy 2) | | i_rx_phy (2)
usb_tx_phy usb_rx_phy

i_ff_epl
usb_fifo312x8

i_ff_ep2 (2)
usb_fifo312x8

i_ff_ep3
usb_fifo128x8

i_ff_cpd (2)
usb_fifo128x8

i_ff_ep5 (3)
usb_fifo128x8

i_ff_ep6 (4)
usb_fifo128x8

! } ! | |

i_rom (2)
usb_rom

i_ff_in (2)
usb_fifo64x8

B /_siei_ep()
y

usb_sie usb_ep0

i_ff_out (3)
usb_fifo64x8

i_ram (4)
usb_ram128x8

i_ram (2)
usb_ram512x8

i_ram (2)
usb_ram128x8

i_ram (3)
usb_ram128x8

i_ram
usb_ram512x8

i_ram
usb_ram128x8

LN

i_dma
usb_dma

i_ram (2)
usb_ram64x8

i_rx_phy (3)
usb_rx_phy

i_pd_sie i_pe_sie
usb_pd_sic | | usb_pe_sie

i_tx_phy (3)
usb_tx_phy

i_pa_sie
usb_pa_sie

i_ram (3)
usb_ram64x8

icrel6
usb_crc16

i_crcs
usb_crc3

i_crel6 (2)
usb_crcl6

i_ff2
usb_fifo2

Figure 6: Visualization of the extracted module hierarchy of a USB controller

Test Generator creates a trace file, registers the reflected
variables, ports and signals to be traced and closes the
trace file.

5.3.1 Test Generation Example

We briefly describe the automatic test generation us-
ing a small part of the USB example in Figure 6. We
take a look in particular at the module usb_crcs, a sim-
ple CRC checksum checker. Figure 7 shows the interface
of the CRC checker module. It has to input variables,
din for the data value, and crc_in, for the CRC value.
For this very simple example we show how to automat-
ically generate test vectors for these inputs.

SC_MODULE (usb_crcb) {
public:
sc_in<sc_uint >crc_in;
sc_in<sc_uint<11> >din;
sc_out<sc_uint<5> >crc_out;
void update(void);
SC_CTOR(usb_crc5) {
SC_METHOD (update) ;
sensitive << crc_in << din;
}
};

Figure 7: Interface of the module usb_crc5 from
the USB example

In the simpleRand mode, constrained testbenchs are
created by initializing SCV smart pointers for the pre-
specified port as shown above. Furthermore the random
values generated are constrained by defining keep_out
and keep_only constructs with the legal ranges given
from the input data file as shown in Figure 9. If no data
file is provided then by default random legal ranges are
defined.

In the distRand mode, constrained testbenchs are
generated by defining SCV_bags that are given legal
ranges and the probabilistic distribution of these ranges

/*! Defining SCV smart pointers !*/
scv_smart_ptr <int> r_crc_in;

scv_smart_ptr <int> r_din;

/*! Generating the randomized values !*/
r_crc_in->next();

r_din->next();

Figure 8: Snippet of the testbench in the uncon-
stRand mode for a pre-specified port

/%! Defining simple constraints !*/
scv_smart_ptr <int> r_crc_in;

scv_smart_ptr <int> r_din;

/*! Defining the legal ranges !*/
r_crc_in->keep_only(10,1000) ;
r_crc_in->keep_out (100, 300);
r_crc_in->keep_out (600, 900);
r_din->keep_only(1,10000000) ;
r_din->keep_out (1000, 30000000) ;
r_din->keep_out (3001000, 9000000) ;
r_din->keep_out (9001000, 10000000) ;

Figure 9: Snippet of the testbench in the sim-
pleRand mode for a pre-specified port

from an input data file as shown in Figure 10. As in the
simpleRand mode, if an input data file is not given then
a default distribution and its probability is provided.

During initialization, if the ports are not specified
then the test generating client generates tests with re-
spect to all the ports of the given model in focus.

The code snippet that creates a trace file for the
usb_crch module with the reflected ports crc_in, din and
crc_out is shown in Figure 11:

We intend to improve our automated testbench gen-
eration capabilities by first implementing additional
clients such as coverage monitors and simulation perfor-

/*! Defining weights for the distribution mode !*/
scv_smart_ptr <int> r_crc_in;
scv_bag<pair<int,int> > d_crc_in;

/*! Defining the legal ranges !*/
d_crc_in.add(pair<int, int> (1, 100), 40);
d_crc_in.add(pair<int, int> (5000100, 500700), 30);
d_crc_in.add(pair<int, int> (8000600, 800900), 60);

/%! Setting the distribution mode !*/
r_crc_in->set_mode(d_crc_in);

Figure 10: Snippet of the testbench in the dis-
tRand mode for a pre-specified port

/*! Step 1: Creating a trace file !x/
sc_trace_filex tf = sc_create_vcd_trace_File("trace");

/*! module!x*/

usb_crch crc_inst("crc_inst");

/*! Step 2: Register signals and variables to be traced !*/
sc_trace(tf, crc_inst.crc_in, "crc_input");
sc_trace(tf, crc_inst.din, "din");
sc_trace(tf, crc_inst.crc_out, "crc_output");

/*! Step 3: Close the trace file !*/
sc_close_vcd_trace_file(tf);

Figure 11: Snippet of the testbench showing the
trace file creation

mance monitors to better analyze the SystemC model.
These additional clients assist the Testbench Generator
in making more intelligent and concentrated testbenchs.

6. CONCLUSION

Large scale system designs and increasing component
reuse from diverse sources makes design validation a
nightmare. Consistent structural information from the
entire design models is difficult to obtain, and we claim
that it would be sufficient for many validation tasks.

We present a methodology for automated extraction
of structural information from already existing SystemC
projects and illustrate how the data can be easily ex-
ploited with the examples of a visualization backend
pass, design management tasks, and an automated test
generator.

The entire system has been implemented using open
source tools such as Doxygen, Xerces-C, and GraphViz
and source code of the tool itself is published as an open
source project at Sourceforge.net [10] for others to study
and use.

7. REFERENCES

[1] David Berner, Hiren D.Patel, Deepak A.
Mathaikutty, and Sandeep Shukla. SYstemCXML:

An Extensible SystemC Front End Using XML.
In To be published in Proceedings of the Forum on
specification and design languages (FDL).,
Lausanne, Switzerland, September 2005.

[2] Open Cores. Free open source IP cores and chip
design. http://www.opencores.org.

[3] F. Doucet, S. Shukla, and R. Gupta.
Introspection in System-Level Language
Frameworks: Meta-level vs. Integrated. In Design
and Test Automation in Europe, 2003.

[4] Doxygen Team. Doxygen.
http://www.stack.nl/ dimitri/doxygen/.

[5] Hiren D.Patel, Deepak A. Mathaikutty, David
Berner, and Sandeep Shukla. CARH: An
introspective and service oriented architecture for
validating system level designs. Accepted for
publication in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and
Systems (TCAD).

[6] Edison Design Group C++ Front-End. Edison
design group c++ front-end. Website:
http://edg.com/cpp.html.

[7] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer,
and S. Zhao. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers,
January 2000.

[8] Emden R. Gansner, E. Koutsofios, S. North, and
K.-P. Vo. A technique for drawing directed
graphs. IEEE Transactions on Software
Engineering, 19(3):214-230, March 1993.

[9] Emden R. Gansner and Stephen C. North. An
open graph visualization system and its
applications to software engineering. Softw. Pract.
Ezper., 30(11):1203-1233, 2000.

[10] D. A. Mathaikutty, D. Berner, H. D. Patel, and
S. K. Shukla. FERMAT’s SystemC Parser.
http://systemexml.sourceforge.net, 2004.

[11] OMG. OMG CORBA. http://www.corba.org/.

[12] OSCI. SystemC and SystemC Verification.
Website: http://www.systemc.org.

[13] Emmanuel Pietriga. Zgrviewer - a 2.5D graph
visualizer for the DOT language.
http://zvtm.sourceforge.net /zgrviewer.html, 2005.

[14] W. Snyder. SystemPerl.
http://www.veripool.com/systemperl.html.

[15] The Apache Software Foundation. Xerces C++
validating XML Parser. Website:
http://xml.apache.org/xerces-c/.

