
GALS 2005 Final Version

A Functional Programming Framework for
Latency Insensitive Protocol Validation

Syed Suhaib, Deepak Mathaikutty and Sandeep Shukla

Virginia Polytechnic Institute and State University
Blacksburg, VA-24060, USA

David Berner and Jean-Pierre Talpin

INRIA-IRISA
Campus Universitaire de Beaulieu

35042 Rennes, France

Abstract

Latency insensitive protocols (LIPs) have been proposed as a viable means to con-
nect synchronous IP blocks via long interconnects in a system-on-chip. The reason
why one needs to implement LIPs on long interconnects stems from the fact that
with increasing clock frequencies, the signal delay on some interconnects exceeds the
clock period. Correctness of a system composed of synchronous blocks communi-
cating via LIPs is established by showing latency equivalence between a completely
synchronous composition of the blocks, and the LIP based composition. A design
flow based on a synchronous composition specification, and stepwise refinement to
LIP composition can be easily conceived, and a proof obligation to show latency
equivalence between the synchronous specification and the refinement needs to be
discharged. In this work, we propose a functional programming based framework
for modeling and simulating LIP, and implement the semantics of various refine-
ment steps in the programming model, so we can validate the LIP model against
the original system within this functional programming framework. Such validation
becomes easier due to the inherent denotational model of functional languages. We
specifically use Standard ML to model the original system implementation as well
as its latency insensitive version and compare the two by creating a model that con-
tains both, giving them the same inputs and checking their outputs to be latency
equivalent.

Key words: Latency insensitive protocols, functional
programming framework, validation, SML.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

1 Introduction

In todays embedded systems, clock speeds keep rising. The signal propagation
speed however is not increasing, hence a growing number of designs hit a limit
where some wires on the chip are as long as the distance a signal covers
during one clock cycle. Since, the number of gates reachable in a single cycle
does not change significantly, the percentage of the chip reachable within
a single clock cycle is decreasing, and as a result we have reached a point
where more gates fit on a chip than can be communicated in a single clock
cycle [1]. In order to go past this limit, latency insensitive protocols (LIP)
provide means to let components with a multiple clock cycle distance still
communicate correctly [2].

In current SoC based design methodologies, reduced time-to-market dic-
tates efficient reuse of complex components. This has led to the idea of de-
veloping libraries of Intellectual Property (IP) components. The integration
of such complex IPs on SoC and communication between them has shifted
the performance bottleneck of the system from computation within them to
communication between them.

The impact of this shift of problem domains can be seen in state-of-the-
art microprocessor designs. For example, the design of the hyperpipelined
Netburst microarchitecture of Intel’s Pentium 4 processor uses one of the first
pipelines containing pipeline stages designed exclusively to handle wire delays.
A drive-stage is dedicated to specifically handle the signal propagation with-
out performing any computation [3]. Furthermore, recent studies using cache
analysis tools predict that in a 35-nm design running at 10GHz, accessing a
4-Kbyte Level-1 cache requires about three clock cycles [4]. Increased relative
interconnect length affects current memory-oriented microarchitectures that
strongly rely on the low communication latency assumption [5]. Therefore,
it is important to equip such models with protocols that make them latency
insensitive (LI) and ensure proper functioning also for distances beyond one
clock cycle.

There are many ways one can ensure correctness of LI systems. Dynamic
validation can be used to show that a system using LI techniques is func-
tionally equivalent to the completely synchronous model of the system which
assumes zero delay communication. These tests are not reliable, since they
only cover certain input sequences. Therefore, formal verification is more de-
sirable validation mechanism. In order to formally verify such protocols, the
LI system as well as its synchronous idealization have to be modeled formally,
and latency equivalence has to be captured as a formal property. However, our
experience is that model checking is very resource consuming, and verification
of larger systems becomes difficult [6]. Also extension of the formal models is a
tedious process. Another way to confirm the correctness of such an implemen-
tation is to mathematically formalize it, as done in [1]. But mathematically
proving the equivalence of two systems is a challenging task and not beyond

2

mistakes. It requires complex mathematical proofs that are not straightfor-
ward to follow by others who want to confirm them, hence every new variation
of LIPs cannot be validated easily using mathematical proof techniques. The
best way is to provide designers with an easy to use framework to model and
validate their protocols.

In this work, we propose a functional programming framework to validate
such systems. A functional program is a function that receives the programs
input as arguments and delivers the programs output as results. It has no in-
ternal state, which makes it free from any side effects. The validation frame-
work for LI systems is easy to formulate and comprehend using functional
programming, and can also be easily applied to large systems. We use Stan-
dard ML (SML) [7] to model the original system implementation as well as its
LI version and check the output of both models to be latency equivalent. This
SML based simulation for validation is a convenient way to validate the LI
systems, especially for debugging the early versions of the protocols. In this
work, we experiment with the bridge-based approach proposed by us in [6],
which is a variation of the original LIP proposed by Carloni et. al.

Organization: The paper is organized as follows: In Section 2, we show
the related work done using LIPs. In Section 3, we introduce the preliminary
definitions and notations used in the paper, followed by the LIP refinement
methodology illustrated in Section 4. In this section, we described the compo-
nents needed for the LIP refinement and show how it is implemented in SML
along with a case study. In Section 5, we show the LIP implementation for
multiclock systems followed by the conclusion in Section 6.

2 Related Work

LIP for systems with long interconnection delays (i.e. greater than one clock
cycle) were initially proposed by Carloni et al [8,1,9] for single-clock SoCs.
In their approach, all processes are encapsulated in a wrapper to derive a
process that is latency equivalent 1 to the actual process, without having to
modify the internals of the original IP. Relay stations are added along the long
interconnections. They act like pipeline blocks to store and forward data, and
contain at least two registers and a control logic. The insertion of these relay
stations increases the number of elements to route and requires additional
space on the chip for their placement. Once it is determined where relay
stations have to be added based on the length of the interconnects, placement
and routing of the entire chip design now including the relay stations has to
be redone. Several iterations for placement and routing are needed in order
to get a configuration that satisfies all interconnection constraints.

All components of such LI designs are assumed to operate with the same
clock. Singh and Theobald generalize the LI theory for Globally Asynchronous

1 We define the notion of latency equivalence in the preliminary definitions section

3

and Locally Synchronous (GALS) systems [10]. In their approach, complex
FSMs implemented in the wrapper control all input and output signals. The
communication network is implemented as an asynchronous system to connect
modules with different clocks. Overall this approach is associated with heavy
penalties in terms of implementation costs and performance.

Casu and Macchiarulo show how to reduce chip area compared to Car-
loni’s approach [2]. They use a smart scheduling algorithm for the functional
block activation and substitute relay stations with simple flip-flops. One dis-
advantage of this approach is that the schedule has to be computed a priori
and depends on the computation in the process. If any change is made in
any process, it may result in a change of the flow of tokens. In this case, the
schedule has to be recalculated, which is expensive.

In [6] we propose another modification of Carloni’s approach, which in-
volves removing the relay stations along the long interconnects and inserting
extra wiring logic using a splitter and a merger process. This solution is
generalized for multi-clock systems where communication is done based on a
global clock and the process wrapper links the processes to the environment,
irrespective of the local clock of the process. Since there are no relay stations,
there is no requirement to place the relay stations along the wires, whereas
the splitter and merger processes are placed on the interface of the process.
We call this the bridge based approach. Here, we use this approach and show
how to validate it in a functional programming framework.

3 Background and Preliminary Definitions

3.1 Functional Programming

Functional programming is seen to be highly relevant to the understanding of
reactive and interactive systems. A computation is expressed as a function
and its interaction with the outside world is modeled as inputs given to the
function. functional languages provide a clean and simple semantic model,
which performs all computation by function application, thereby providing a
more abstract notation to express computation.

We use Standard ML (SML) [7] to model the original system as well as
its LI version and compare both the models. SML offers an excellent ratio
of expressiveness to language complexity, and provides competitive efficiency.
SML manages to combine safety, security, and robustness with a great deal of
flexibility because of its type and module system. Other features of the SML
based framework include:

• SML provides good expressiveness with its ability to treat functions as first-
class values, and its usage of higher-order functions. The availability of
imperative constructs provide great expressive power within a simple and
uniform conceptual framework.

• SML provides a high-level model which makes programming more efficient

4

and more reliable by automating memory management and garbage collec-
tion.

• SML does static type checking which detects many errors at evaluation
time. Error detection is enhanced by the use of pattern matching and by
the exception mechanism.

• The SML module system is an extension of the underlying polymorphic type
system thereby providing separation of interface specification and imple-
mentation. These facilities are very effective in structuring large programs
and defining generic, reusable software components.

3.2 Preliminary Definitions

In this section, we show some of the definitions we use in the rest of the
paper. Let V be the set of data values and, T be a countable set of time
stamps. Unless otherwise specified, in this paper, we assume T = N = set of
natural numbers. An event e ∈ V × T is an occurrence of a data value with a
particular time stamp. However, in the systems we consider, a special event
called absent event denoted by τ may occur 2 . Therefore, the set of all events
is denoted by E, where τ ∈ E and for all other e ∈ E, e ∈ V × T. When e ∈

V × T it is called an informative event. A signal s is defined to be a sequence
of events, often denoted as e1e2e3 . . . where ei ∈ E.

For the preliminary definitions, if s is a signal, s[i] denotes the ith event,
hence either s[i] ∈ V × T or s[i] = τ . The set of all signals is denoted by S.
The signals can be either input signals or output signals of a process. We
also distinguish Stall signals from all signals in the system. A stall signal
st is a sequence of boolean events, i.e., st[i] ∈ Bool × T The set of all stall
signals is denoted by ST . In our system, IPs are hardware modules that
map input signals to output signals, therefore in this paper we refer to them
as processes. A process p is a function Sn −→ Sm where n, m are natural
numbers. A synchronous system consists of these processes where zero-delay
communication and zero-time computation among these processes happen at
the global clock edge.

In the remainder of this section, we define a few terms and notations that
are used throughout the paper.

Definition 3.1 Given s ∈ S and e ∈ E, we define e⊕ s = s′ where s′ = e :: s, s.t.
e is the first element and s is the rest of the signal.

Definition 3.2 Given one tuple of m elements and another of n elements,
⊙

creates a tuple of m + n elements.

< a1, . . . , an >
⊙

< b1, . . . , bm > = < a1, . . . , an, b1, . . . , bm >

Definition 3.3 Given two tuples of n events and n signals respectively,
⊕

creates
a tuple of n signals with an event appended to each signal.

2 It may be caused due to lack of valid data in the producer or due to the consumer’s
request to delay a transmission

5

< e1, . . . , en >
⊕

< s1, . . . , sn > = < e1 ⊕ s1, . . . , en ⊕ sn >

Definition 3.4 Latency Equivalence

The two signals s1 and s2 are said to be latency equivalent, s1 ≡e s2 ⇔ F(s1) =
F(s2), where

F : S → S be defined as, F(s) = σ(s, 1, n) and,

σ(s, i, n) =



















σ(s, i + 1, n), if s[i] = τ

s[i], if (i = n)

s[i] ⊕ σ(s, i + 1, n), otherwise

F takes a signal s as input and outputs a signal s′ that contains no τ events,
but preserves all informative events. The helper function σ takes the signal s,
n which is the length of the signal s and the initial index 1 as parameters. σ

is defined recursively with the following cases: If the event at current index is
τ , then σ is called with the index incremented. If the event is not τ and the
index reaches the length of the signal, then σ terminates by returning the last
event, otherwise the informative event at the ith position is returned with σ

called to check for the next event.

Definition 3.5 Sequential composition

Given two processes p1: Su → Sv, p2: Sv → Sw and s1, · · · , su ∈ S, we define the
sequential operator ◦ as:

p2 ◦ p1(s1, · · · , su) = p2(p1(s1, · · · , su))

Definition 3.6 Feedback composition [11]
Given a process p: (S × S) → (S × S) and si, sj, sk ∈ S, we define the feedback
operator FBp(p) as:

FBp(p)(si) = sk where p(si, sj) = (sj , sk)

The signal sj is an internally generated signal and the behavior of the feedback
process is defined using fixed point semantics [11]. For simplicity, we define
the feedback composition for a specific process with two input and output
signals, though it can be easily generalized for processes with multiple inputs
and outputs.

Definition 3.7 A vectorization function Υn
i=1(exp(i)) is defined that evaluates the

expression exp(i) for i from 1 to n.

Υn
i=1(exp(i)) = < exp(1), exp(2), · · · , exp(n) >

where, exp(k) is a textual replacement of i by k in exp(i).

4 LI Refinement Steps

In this section, we show a transformation procedure to design a LI system. The
transformation of a synchronous system to a LI system is shown in Figure 1.

The steps to LIP refinement are as follows:

1. We start with a collection of synchronously communicating components.

6

Fig. 1. Refinement steps to LI implementation

These components can be custom-made modules or IP cores.

2. Approximate floor planning and interconnection routing are done by de-
sign engineers to check for long interconnects. If all communication can
be done in a clock cycle, then there is no need for LIP refinement.

3. All modules are encapsulated with a block of control logic. This encap-
sulation may include adding control logic that controls the flow of the
events, buffers, control stations, repeater stations etc to enable correct
transmission of data with the LIP. Once each process is encapsulated,
verification is done to ensure its correctness, meaning that they behave
similar to the original processes. By correctness here, we mean that if
two processes are given the same set of input events, then the order of
the informative events on its output signals are the same. We call this
latency equivalence 3 .

4. Estimation using floor planning and interconnect routing is done again,
this time with the encapsulated processes to relocate and evaluate the

3 Two signals are said to be latency equivalent if both signals have the same order of
informative events

7

delays on the long interconnects.

5. After finding the delays on the long interconnects, the designer can then
segment those long interconnects with additional processes containing
buffers, latches, forwarding stations, etc to ensure that data is properly
communicated through the long interconnects. Depending on the delay
of the interconnect, the events can be compared from the point they are
placed on the signal to the point they leave the signal.

6. Floor planning and interconnect routing is done again to ensure that no
long interconnects exist in the system.

4.1 SML based LIP description

In this section, we describe the components of the LI framework and its im-
plementation in SML. A finite signal is modeled as generic list, whereas an
infinite signal is written as delayed function application as shown in Listing 1.

Listing 1: Finite and Infinite Signal
1 (∗ De f i n i t i on of a f i n i t e s i g n a l ∗)
2datatype s i g n a l = n i l | ’ a : : ’ a l i s t
3

4 (∗ De f i n i t i on of an i n f i n i t e s i g n a l ∗)
5datatype i n f s e q = n i l | cons of ’ a ∗ (un i t −> i n f s e q)

In SML, for our convenience we formulate an event to be a list of two
elements, where the first element is the value and the second element identifies
whether the event is an informative event or an absent event (eg. ej = [3,1] is
the jth event with 3 as the value and 1 as the identity of the event 4). Hence,
a signal can be formulated as a list of events. (eg: si = [[1,1],[2,1],[3,0],. . .]).

The refinement steps for transforming a synchronous system to a LI system
can be thought of as a two stage operation. The first stage involves encap-
sulating the synchronous components and the next stage involves refining the
interconnects to make them consistent with the flow of events. These stages
are shown in the steps in Figure 1. In the first stage, each module is encapsu-
lated with an equalizer. An equalizer is a process instantiating template that
given n input signals and a stall signal, it produces n output signals and n

stall signals.

The functionality of the equalizer can be divided into three modes:

1. Disable mode: In this mode, the equalizer is stalled by the another process
through an input stall signal. The equalizer sends absent events on all
its output signals and enables all the output stall signals using function
InsertStl (shown in Definition 8).

2. Absent mode: In this mode, the equalizer receives an absent event on one
of its input signals and its input stall is disabled. The equalizer sends
absent events on all its output signals and stalls only those processes from

4 1 corresponds to an informative event and 0 corresponds to an absent event

8

which it received an informative event using function InsertAbt (shown
in Definition 8).

3. Present mode: The equalizer receives informative events on all its input
signals and its input stall is disabled. It places these informative events
on the output signals using function InsertEvt (shown in Definition 8).

Definition 4.1 Equalizer

Given s1, . . . , sn ∈ S and st ∈ ST , the equalizer E : (Sn × ST) −→ (Sn × ST
n)

is defined as:

E(s1, . . . , sn, st) = eval(s1, . . . , sn, st, 1, · · · , 1) where,

eval(s1, . . . , sn, st1 :: st2, i1, i2, . . . , in) =

if (st1 = false) then

if (∃n
j=1 (sj [ij]) = τ) then InsertAbt

⊕

evalnextindex

else InsertEvt
⊕

evalnextevent

else InsertStl
⊕

evalnextstall

InsertAbt = < τ, τ, . . . , τ >
⊙

Υn
j=1(exp1(j))

InsertEvt = Υn
j=1(sj[ij])

⊙

< false, . . . , false >

InsertStl = < τ, τ, . . . , τ >
⊙

< true, . . . , true >

evalnextindex = eval(s1, · · · , sn, st, Υ
n
j=1(exp2(j)))

evalnextevent = eval(s1, · · · , sn, st, Υ
n
j=1(ij + 1))

evalnextstall = eval(s1, · · · , sn, st, Υ
n
j=1(exp2(j)))

exp1(j) : if (sj [ij]) = τ then false else true

exp2(j) : if (sj [ij]) = τ then ij + 1 else ij

The equalizer is defined using a helper function eval that takes n signals,
a stall signal and initial indices for each input signal and returns n signals and
n stall signals. The initial indices are given assuming that the first event for
each signal is at that position.

Listing 2 shows the implementation of the equalizer process in SML. The
equalizer reads one event from all the input signals of a process along with
an event from the stall input. It then checks if all the events at a time are
informative. The check for events is done through the etypes and info func-
tions (lines 6-13). The functionality setting the stall values for Disable mode is
done by the stallon function and the output is given by e3 (line 21). The stall
values when the equalizer is in absent event mode is set by stallset function
and the output is given by e2 (line 20). Finally, the valid mode output is given
by e1 (line 19).

Listing 2: Equalizer

9

1 fun e qua l i z e r () = fn s => fn s t => f (s , st , i ndex s ta r t (l ength (s))
2

3 fun f ([] , s t1 : : st ,) = [] | f (, [] ,) = [] | f (, , []) = [] |
4 f (s , s t1 : : st , i) =
5 l et

6 fun etype (x1 : : x2) = x2 | etype ([])=n i l
7 fun etypes [] = [] | etypes (x1 : : x) = etype (x1) @ etypes (x)
8 fun i n f o [] = f a l s e |
9 i n f o (x1 : : []) = i f (x1 = 1) then t rue else f a l s e |

10 i n f o (x1 : : x) = i f (x1=1) then (i n f o (x)) else f a l s e
11 val a l l e v e n t s = e (s , i) (∗ Events from a l l t he s i g n a l s at a time ∗)
12 val a l l i n f o = i f i n f o (etypes (a l l e v en t s)) = true
13 then t rue else f a l s e (∗ True when a l l e vent s are in format i ve ∗)
14 fun s t a l l o f f (0) = [] | s t a l l o f f (n) = [1] @ s t a l l o f f (n−1)
15 fun s t a l l o n (0) = [] | s t a l l o n (n) = [0] @ s t a l l o n (n−1)
16 fun f l i p v a l (x) = i f x=1 then 0 else 1
17 fun s t a l l s e t ([]) = [] | s t a l l s e t (x1 : : x) = [f l i p v a l (x1)] @ s t a l l s e t (x)

18

19 val e1 = [a l l ev en t s , [s t a l l o f f (l ength (a l l e v e n t s))]]
20 val e2 = [tauevents (l ength (s)) , [s t a l l s e t (tags (a l l e v en t s))]]
21 val e3 = [tauevents (l ength (s)) , [s t a l l o n (l ength (a l l e v e n t s))]]
22 in

23 (case (s t1) of

24 1 => (i f a l l i n f o = true
25 then ([e1] @ f (s , st , incrementindex (i)))
26 else ([e2] @ f (s , st , incrementempty (i , e types (a l l e v en t s))))
27) |
28 0 = > ([e3] @ f (s , st , i)) |
29 = > [])
30 end

The equalizer process is then sequentially composed with the synchronous
process to form the shell of the process.

The next stage of the refinement methodology involves refining the long
interconnects by inserting processes that not only ensure correct flow of events
from one process to another, but also ensure that the delay in between the
events is minimized. The long interconnects are refined by inserting bridge

processes (Listing 3). A bridge is formed by sequential composition of a
splitter and a merger process (Figure 2). Each bridge process has one in-
put signal and one output signal. The delay on the bridge is modeled by the
Delayproc process (line 1) which delays the input by n cycles.

Fig. 2. Bridge

Listing 3: Bridge process
1 fun Bridge (n) = fn s => Delayproc (n) (merger (n) (s p l i t t e r (n) (s)))

10

The splitter and the merger process are connected by n interconnects
where n is the delay on the long interconnect. Hence, splitter process has n

output signals. This process contains simple placement logic for the placement
of events on these n signals. The splitter is implemented at the output of a
process, and it transfers events on the corresponding signal. The splitter only
places one event on one of the output interconnects and absent events are
placed on the rest of the signals at a particular time stamp. Assuming that
there are i events on the input signal of the splitter, at every cycle, the ith

event is placed on the nth signal based on a rotational scheme. For example,
if the delay on the interconnect is 3 cycles, then in the first cycle, the first
element will be placed on the first signal and absent events will be placed
on the other two signals. In the next cycle, the second event will be placed
on the second signal and absent events will be placed on the first and third
signals and for the third event it will follow the scheme. After the third event
is placed, in the following cycle, the fourth event will be placed on the first
cycle again. This rotation scheme will continue for the rest of the events. This
functionality is illustrated by the formal definition shown below:

Definition 4.2 Splitter

Given s ∈ S, the Splitter H : S → Sn is defined as:

H(s) = spread(s, n, 1) where,

spread(x :: y, n, i) =







place(x, n, i, 1)
⊕

spread(y, n, 1), if i = n

place(x, n, i, 1)
⊕

spread(y, n, i + 1), otherwise

place(x, n, i, j) =







x
⊙

insertAbt(n − j), if i = 1

τ
⊙

place(x, n, i − 1, j + 1), otherwise

insertAbt(n) =







τ, if n = 1

τ
⊙

insertAbt(n − 1), otherwise

The splitter is defined using a helper function spread(s,n,1) that takes
three parameters which are the signal s, delay on the interconnect n and
initial index of the signal s. spread uses the place function to send an event
on the appropriate output signal. The function place puts τ on all signals
using insertAbt except for the ith signal on which it places the ith event of the
input signal.

The SML implementation of the splitter process is shown in Listing 4. An
input signal and the interconnect delay is given to the splitter process. One
event is read from the input signal and insertevent function (line 6) places
the event from the input signal to one of the interconnects and absent events
are placed on rest of the interconnects. The events are placed in the rotational
scheme as illustrated earlier.

Listing 4: Splitter
1 fun s p l i t t e r (n) = fn s => f (s , 1 , n)

11

2

3 fun f ([] , ,) = [] |
4 f (x1 : : x , i , n) =
5 l et

6 fun i n s e r t e v en t (, j , 0) = [] |
7 i n s e r t e v en t (y1 , j , n) = (i f n = j
8 then [y1] @ i n s e r t e v en t (y1 , j , n−1)
9 else [[0 , 0]] @ i n s e r t e v en t (y1 , j , n−1))

10 in

11 i f (i = n)
12 then [i n s e r t e v en t (x1 , i , n)] @ f (x , 1 , n)
13 else [i n s e r t e v en t (x1 , i , n)] @ f (x , i +1 , n)
14 end

Contrary to the splitter, we implement a merger that takes n input signals
and outputs one signal. The merger also extracts one event from the input
signals based on the rotational scheme as illustrated earlier and places it on
the output signal. The functionality of the merger is formally defined below:

Definition 4.3 Merger

Given s1, · · · , sn ∈ S, the merger M : Sn → S is defined as:

M(s1, . . . , sn) = ext((s1, . . . , sn), n, 1) where,

ext((x1 :: y1, . . . , xn :: yn), n, i) =






rem((x1, .., xn), n, i) ⊕ ext((y1, .., yn), n, 1), i = n

rem((x1, .., xn), n, i) ⊕ ext((y1, .., yn), n, i + 1), otherwise

rem(x :: y, n, i) =







x, if i = n

rem(y, n, i + 1), otherwise

The merger is defined using the helper function ext that takes as parame-
ters the signals s1, . . . , sn, delay of the signal n and the index of the first signal.
ext extracts the informative event from the appropriate signal and places it
on the output signal using the rem function. rem returns the event at the ith

position.

The SML representation of the merger is shown in Listing 5. The extractevent

function extracts one event from all signals at a time (line 3). Extraction of
events from the signals is done in similar way as they are placed on the inter-
connects by the splitter.

Listing 5: Merger
1 fun merger (n) = fn s => g (s , n , 1)
2

3 fun g ([] , n , i) = [] | g (x1 : : x , n , i) =
4 l et

5 fun ex t r a c t even t ([] , n) = [] | ex t r a c t even t (x1 : : x , n) =
6 (case (n) of

7 1 => x1 |
8 => ex t r a c t even t (x , n−1))
9 in

10 i f (i = n)
11 then [e x t r a c t even t (x1 , i)] @ g (x , n , 1)
12 else [e x t r a c t even t (x1 , i)] @ g (x , n , i +1)

12

13 end

After the refinement of all the components and the long interconnects of
the synchronous system, all the components are composed together. The input
sequence of the splitter and the output sequence of the merger are equivalent,
since the order of events written by the splitter on the n output signals and
the order of events read by the merger from its n input signals is the same.
Therefore, the flow of events from the output of one shell across the long
interconnect to the input of the corresponding shell is maintained. As the stall
signals are dependent on the events received in the previous cycle from the
processes to which these stall signals are connecting, they operate on feedback
semantics. We use the feedback operator defined in the preliminary section to
implement the feedback. Listing 6 shows the fixed point computation for the
feedback semantics.

Listing 6: Feedback Process
1 fun fb (p) = f i x p t (p , s , [] , l ength (s)+1)
2 (∗ The f i x p o i n t i s computed on event b a s i s ∗)
3 fun f i x p t (q , s , sout , 0) = sout | f i x p t (q , s , sout , n) =
4 f i x p t (q , s , (q s sout) , n−1)

4.2 Check for Correctness

Once we have the LI system and the original synchronous system, we have to
verify if they are latency equivalent in order to satisfy the proof obligation.
We do this by checking if the outputs of the two systems are latency equivalent
given the same input sequence. The comparator is modeled which is a reduced
version of the equalizer. This Eqcomparator process compares the order of
informative events output by the two systems. In the case when an absent
event is seen on one of the output signals, it is discarded and the next event
is considered on the same signal. The informative events on the two output
signals are compared in sequence to ensure correct functionality. The LIP
system satisfies the proof obligation if the output the two systems is latency
equivalent, when given the same inputs. Figure 3 shows the setup of the
problem. The SML code of the Eqcomparator is shown in Listing 7.

Listing 7: Eqcomparator
1 fun Eqcomparator () = fn s1 => fn s2 => compare (s1 , s2 , 1 , 1) ;
2

3 fun compare ([] , , ,) = [] |
4 compare (, [] , ,) = [] |
5 compare (s1 , s2 , i , j) =
6 l et

7 val event1 = ex t r a c t even t (s1 , i) ;
8 val event2 = ex t r a c t even t (s2 , j) ;
9 val va l i d = i f event1 = [] orelse event2 = [] then f a l s e else t rue ;

10 val va l p r e s en t =
11 i f va l i d = true
12 then i f tag (event1) = [1] andalso tag (event2) = [1]
13 then t rue else f a l s e

13

14 else f a l s e ;
15 fun comp(x , y) = i f (x=y) then t rue else f a l s e ;
16 in

17 i f va l i d = true andalso va l p r e s en t = true
18 then (i f comp(value (event1) , value (event2)) = true
19 then [t rue] @ compare (s1 , s2 , i +1, j +1)
20 else [f a l s e])
21 else i f va l i d = true
22 then i f (tag (event1) < > [0] andalso tag (event2) < > [0])
23 then [f a l s e]
24 else i f (tag (event1) = [0] andalso tag (event2) = [0])
25 then compare (s1 , s2 , i +1, j +1)
26 else i f (tag (event1) = [0] andalso tag (event2) = [1])
27 then compare (s1 , s2 , i +1, j)
28 else i f (tag (event1) = [1] andalso tag (event2) = [0])
29 then compare (s1 , s2 , i , j +1)
30 else [t rue]
31 else [t rue]
32end

Fig. 3. Comparing synchronous system with its LI implementation

4.3 Case Study

We consider a case study of an adaptive modulator that consists of three
IPs: regulator, convolutor and analyzer. The regulator module takes an input
signal and a control signal and outputs based on the control signal by adding
a threshold value. This output is then multiplied with a masking value by
the convolutor module. The output of the system is given by the amplitude
signal. The analyzer module outputs the control signal based on the input of
the amplitude. The connections of these components are shown in Figure 4.

Fig. 4. Adaptive Modulator

14

With these three IPs, we follow the refinement steps described in Figure 1
to construct the LI system. We have these three synchronous components.
Early floor planning and interconnect routing is done to find the delays on
the interconnects. We assume in this case that the regulated input signal is a
long interconnect. Hence, we encapsulate the modules with the equalizer and
repeat floor planning to find the delay on the interconnects. The long inter-
connect is then refined by adding a bridge process. The new LI representation
of the adaptive modulator is shown in Figure 5. The SML implementation is
done using the components described in the previous section and is listed in
the appendix. In order to check the correctness of the LI model, we create
a model containing the LI implementation as well as the model with a zero
communication assumption. We feed the same input sequence to both models
and verify the latency equivalence of their outputs as described in Section 4.2.

Fig. 5. LI based Adaptive Modulator

The case study presented here is just an example to show how the LI
refinement of a synchronous system can be done and validated against its
original implementation. Any deterministic functionality can be integrated
in a synchronous module and can be compared with its LI refinement. Since,
changing the functionality is easy in a functional framework, many case studies
can be analyzed successfully. On the other hand the functionality cannot be
changed and verified easily when the system is being formally verified using a
model checker.

5 Multiclock extension to LIP

The LI systems proposed earlier have been mainly targeting single clock
synchronous systems where all components operate on the same clock. We
now consider extending the existing LI implementation for multiclock systems
where different components with different clocks are connected via arbitrarily
long interconnects. The need for a system with components having different
clocks arises when different IP blocks from different vendor are integrated in
the same system. At this time, however, we are only permitting the use of
components with defined clock relations, also called rationally clocked sys-
tems. By clock relation, we mean that there is a known ratio of the evaluation

15

cycle 5 between different components. In the SML framework, the notion
of clock is defined by the evaluation cycle of the processes. This approach
therefore makes it possible to connect rationally clocked systems.

We modify our original refinement methodology for multiclock refinement.
Before encapsulation of the processes, we add an Insert and a Strip process
to each synchronous component of the system. The Insert process inserts n

absent events for each event on the original incoming signal where n is the
ratio of events on the incoming signal to the number of events evaluated by the
process in each cycle. The output of the Insert process is then given to the
original process. The formal definition of the Insert process is shown below:

Definition 5.1 Insert is a process, s.t. I(s) = s′ where

s′ = g(y, n) and,

f(n) =







τ, if n = 1

τ
⊙

f(n − 1), otherwise

g(x1 :: x, n) = (x1
⊙

f(n))
⊕

g(x, n)

We also place a Strip process at the output of the synchronous component.
This strip process removes the extra absent events inserted by the Insert

process. The formal definition of the Strip process is given below:

Definition 5.2 Strip is a process, s.t. W(s) = s′ where

s′ = g(y, n) and, t(x1 :: x) = x

f(s, n) =







t(s), if n = 1

f(t(s), n − 1), otherwise

g(x1 :: x, n) = f(x1, n)
⊕

g(x, n)

Once these processes are composed with the original component, we can
then follow the refinement methodology. In SML, we can easily modify our
aforementioned LI system to an LI system containing components with differ-
ent evaluation cycles. The SML implementation of the two processes is show
below:

Listing 8: Multiclock Interface
1 fun I n s e r t (n)= fn s1 => h(s1 , n)
2 fun h ([] ,) = [] | h(x1 : : x , n) =
3 l et

4 val s i g1 = [x1] @ t a u s a l l (n)
5 in

6 [s i g 1] @ h(x , n)
7 end

8

9 fun St r i p (n) = fn s1 => f (s1 , n)
10 fun f ([] ,) = [] |
11 f (x1 : : x , n) =
12 l et

5 In each evaluation cycle, a process consumes an input and produces an output.

16

13 fun dr [] = [] | dr (x : : x f) = xf
14 fun drop ([] ,) = [] | drop (s , 1) = dr (s) |
15 drop (s , i) = drop (dr (s) , i −1)
16 in

17 drop (x1 , n) @ f (x , n)
18 end

6 Conclusion and Future Work

We propose a functional programming based framework using SML for the
validation of LI systems against their original system implementations. The
inherent denotational model of functional languages makes them well suited
to formalize such complex protocols. In this framework, computation within
the blocks can be changed without much additional effort whereas in formal
verification any change of the model results in time consuming verification
runs. We show a refinement methodology that defines how to transform a
system consisting of synchronous blocks assuming zero delay communication
to a corresponding LI system with long interconnects. An Eqcomparator

comparator process is modeled that does a latency equivalence check between
the outputs of the original system and its LI version given the same input
sequence. We model a set of LI components, an equalizer, a splitter and
a merger process, with which any deterministic synchronous system can be
implemented. We extend this with processes insert and strip to multiclock
systems where IPs with known clock ratios are also allowed.

Another possible extension for this is to allow unknown clock ratios. This
would be another step towards being able to handle GALS systems where
components can have clocks that are entirely unrelated.

References

[1] L. Carloni, K. McMillan, and A. Sangiovanni-Vincentelli. The theory of latency
insensitive design. IEEE Transactions on Computer Aided Design of Integrated
Circuits and System, 20(9):1059–1076, 2001.

[2] M. Casu and L. Macchiarulo. A new approach to latency insensitive design. In
Design Automation Conference, 2004.

[3] P. Glaskowski. Pentium 4 (partially) previewed. Microprocessor Report,
14(8):10–13, 2000.

[4] Vikas Agarwal, M. S. Hrishikesh, Stephen W. Keckler, and Doug Burger.
Clock rate versus ipc: the end of the road for conventional microarchitectures.
SIGARCH Comput. Archit. News, 28(2):248–259, 2000.

[5] L.P. Carloni and A.L. Sangiovanni-Vincentelli. Coping with latency in SoC
design. IEEE Micro, Special Issue on Systems on Chip, 22(5):12, October 2002.

17

[6] Syed Suhaib, David Berner, Deepak Mathaikutty, Jean-Pierre Talpin, and
Sandeep Shukla. Presentation and formal verification of a family of protocols
for latency insensitive design. Technical report, Virginia Tech, 2005.

[7] R. Milner, M. Tofte, R. Harper, and D. MacQueen. The Definition of Standard
ML - Revised. MIT Press, 1997.

[8] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli. A
methodology for correct-by-construction latency insensitive design. In In Proc.
International Conf. Computer Aided Verification, pages 309–315, November
1999.

[9] L.P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency
insensitive protocols. In 11th International Conference on Computer-Aided
Verification, volume 1633, pages 123–133, Trento, Italy, 07 1999. Springer
Verlag.

[10] M. Singh and M. Theobald. Generalized latency-insensitive systems for single-
clock and multi-clock architectures. In Design, Automation and Test in Europe
(DATE’04), 2004.

[11] Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Time
in Models of Computation. Morgan Kaufmann, 2001.

18

APPENDIX

Listing 9: SML Implementation for Adaptive Modulator
1 fun r egu l a t e ([] ,) = [] | r egu l a t e (, []) = [] |
2 r egu l a t e (x1 : : x , y1 : : y) =
3 i f tag (y1) = [1] andalso value (y1) = 1
4 then [[value (x1) − 10 , 1]] @ r egu l a t e (x , y)
5 else [x1] @ r egu l a t e (x , y)
6

7 (∗ #1 and #2 corresponds to the f i r s t s i g n a l and second s i g n a l ∗)
8 fun Reg () = fn s1 => fn s2 => r egu l a t e (s1 , s2)
9 fun Regulate () = fn s1 => fn s2 => fn s t => Reg () (#1(Punzip ()

10 (Equa l i ze r () s1 s2 s t))) (#2(Punzip () (Equa l i ze r () s1 s2 s t)))
11

12 fun mul (, []) = [] | mul ([] ,) = [] | mul (x : : xf , y1 : : y) =
13 i f tag (x) = [1] andalso tag (y1) = [1]
14 then ([[value (x) ∗ value (y1) , 1]] @ mul (xf , y))
15 else ([[0 , 0]] @ mul (xf , y)) ;
16

17 fun Con () = fn s1 => fn s2 => mul (s1 , s2) ;
18 fun Convolute () = fn s1 => fn s2 => fn s t => Con () (#1(Punzip ()
19 (EqualizerTwo () s1 s2 s t))) (#2(Punzip () (EqualizerTwo () s1 s2 s t)))
20

21 fun comp(a , b) = i f a > b then [1 , 1] else [0 , 1]
22 fun compsig ([] ,) = [] | compsig (x1 : : x , y1) = i f tag (x1) = [1]
23 then ([comp(value (x1) , y1)] @ compsig (x , y1))
24 else ([[0 , 0]] @ compsig (x , y1)) ;
25 fun Alt (a) = fn s1 => compsig (s1 , a)
26 fun Alternate (a) = fn s1 => fn s t =>

27 Alt (a) (#1(Punzip2 () (Equal izerOne () s1 s t)))

19

	Introduction
	Related Work
	Background and Preliminary Definitions
	Functional Programming
	Preliminary Definitions

	LI Refinement Steps
	SML based LIP description
	Check for Correctness
	Case Study

	Multiclock extension to LIP
	Conclusion and Future Work
	References

